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ABSTRACT -- High-availability support for Beowulf cluster becomes a critical factor in the acceptance 
of this platform for mission critical use in enterprise environment. A well defined and extensible HA 
software architecture is needed. This paper presents the proposed high-availability software architecture 
called AMATA. AMATA architecture clearly defines the software component and interaction for High 
Availability support. Many cases such as system software failure, registered user software error, hardware 
mal-function, and hardware overload can be detected and handle in a systematic way.   Both discovery and 
recovery process can be added to provide an intelligent and automatic fault recovery process.  Currently, a 
prototype implementation has been developed and the results obtained from that implementation have also 
been included.

KEY WORDS -- High availability, Beowulf clusters, Fault Tolerance,

1. Introduction and Motivation
Beowulf cluster [1] has been widely used as a scalable
information server or large scientific parallel computer. Many
important software and algorithm have been successful
ported to this platform. Nevertheless, operating large
Beowulf cluster system reliably is still a problem since most
of the commodity off-the-shelf parts are not initially designed
as an integral part of the highly reliable systems. PC
components are less reliability than commercial server
system. This problem is the main obstacle in using the cluster
system for mission critical task in enterprise or industrial
computing. In the commercial Unix marketplace, high
availability [2] is today a key to selling server solution and
virtually every Unix suppliers have their own HA software
solution for customers. However, there is still a need for
powerful open source software support that detects and
recover from fault that allows users of Beowulf systems to
construct a cost effective HA server solution for their
computing needs.

In this paper, we present our high availability model and
implementation for Beowulf cluster environment called
AMATA.  AMATA architecture define a well structure
software architecture and interaction between software
components for HA support in Beowulf systems. Under the
framework of AMATA, software components can be built to
detect major systems fault and recovery from that fault in a
systematic way. Moreover, user can easily add some
intelligence logic to the system to automate the detection and
recovery processes.
The organization of this paper is as follows. Section 2
presents the discussion about some related works. Then, we
explain briefly about our background technology that
involves this work in section 3. Next in section 4 we will

discuss about the design and implementation of AMATA
system. Finally, we give the conclusion in section 5.

2. Background and Related Work
High-availability (HA) software can be classified into two
main approaches. The first approach is to extend HA service
in kernel level. Although, this approach can be very efficient,
the portable implementation is not possible. Also, it is
difficult to keep pace with the rapid kernel changes that
happened with Linux kernel. Example of such work is
Piranha [3] and Solaris-MC [4].  Solaris-MC is a prototype
operating system for Solaris cluster that provides a single
system image and high-availability by extending operating
system abstraction across the cluster.

The second approach is to extend the high-availability service
in user space. Not only does this approach has a higher
portability, but also reduce the need to frequently release new
kernel patches. One example is Keep alive project, which is
based on VRRPd [5] implementation of VRRPv2. VRRP is a
standard protocol that helps elect a master server on LAN
when the old master server fail. However, VRRPd only
support the high-availability in case of server fails. No
solutions for user services or system services fail are
provided yet. Linux FailSafe [6] is a community development
effort lead by SuSE and SGI to port SGI IRIS FailSafe
product to Linux. FailSafe provides a full suite of high-
availability capabilities for Linux. These include full N-node
cluster membership and quorum services application
monitoring and failover-restart capabilities, with a set of GUI
tools for administering and monitoring HA clusters.
Unfortunately, only plug-in of Linux FailSafe is free.  Hence,
by delivering a fully available open source cluster, we can
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stimulate the wide spread use of Beowulf clusters as a
solution for mission critical IT needs.

3. AMATA Architecture

3.1 AMATA Structure
The proposed AMATA HA architecture is illustrated in
Figure 1. AMATA architecture consists of the following
components.

Figure 1. AMATA Architecture

Cluster Space Layer is an abstract view of cluster systems.
This layer consists of 2 classed of objects, namely, software
objects and hardware objects. Examples of software objects
are tasks, OS services, daemon, and user processes. On the
other hand, hardware object is node, interface card, network,
and hard disk.

Each object will have an attached component called object
probe that monitors the object performance information and
provides an interface for external object to access these
information. Performance parameter of each object is
represented by a set of counters such as CPU usage, numbers
of packet send/receive and state. Currently, three types of
object probe are available. Firstly, Hardware object probe
is a module that connects with the hardware monitoring
system to receive hardware information such as CPU
utilization, memory usage and network traffic. Secondly,
System services object probe is a module that monitors the
system services on each node. Thirdly, User service object
probe is used to monitor users applications.

Fault Discovery Layer is a layer receives the information
from Object Probe, discover the potential fault and notify the
recovery layer using event mechanism. The discovering
process in this layer is based on a set of rules called
Discovery rule. The role of theses rules is to transform a set
of data received from cluster space into a set of answers. The
execution of these rules takes place in part of the code called
discovery module.

Fault Recovery Layer this layer receive event form fault
discovery layer to generate action to be taken and consists of
recovery rule, recovery module and recovery action driver.
The event that received from Event Service in KSIX[8,9] will
pass to each event handler. We provide default action for
each known event implemented with python. User can also

extend their recovery rule easily by write python script follow
by exist scripts.

3.2 Automatic Fault Detection and Recover
Process

When any fault happened in the system, the process of
automatic fault detection and recovery can be explained as a
flowchart shown in Figure 2.

Figure 2. Recovery process

In Figure 2, the step started from system object in cluster
space. Each object will be probed periodically to measure its
performance state by discovery module. This state will be
passed to internal discovery module, which transform it to a
set of decision such as good or fail. If the failure is detected, a
failure notification event will be sent to recover module.
Recover module will determine an appropriate course of
action using information embedded in the event and recovery
rule. The action will be send to a code called recovery action
driver which execute series of commands that automatically
solved the problem for the user.  In this process, users can
add many complex and intelligent logic to system later to
allow very automatic fix of the problems in cluster system.

3.3 AMATA Implementation
AMATA is implemented as a set of daemon and script that
execute on each node in the system.  The AMATA
implementations rely on many services provided by KSIX [8]
Middleware. After user boot this middleware, KSIX will
automatically load AMATA as one of its services. The
structure of  this software system are as shown in Figure 2.
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Figure 3.  AMATA After KSIX boot

Object probe, discovery module and recovery module will
use KSIX event service to communicate to each other.
Moreover, KSIX feature called automatic restart process has
been employ so that AMATA system will be automatically
restarted when it fail.

One daemon called AMATA console, is used to log the
notification from the fault recovery module. Once the
notification has been accepted,  the console daemon will start
some predefined script corresponded to that event. This
feature allows user to hook some logic to report error. For
instance, having a script that send error message using the
phone paging mechanism. User can also control this daemon
by opening a socket connection to it and communicate with a
simple command. The previously mentioned operation can be
summarized as illustrated in Figure 3.
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Figure 4. Console process diagram

4. Experimental Result
The cluster system used for the test consists of 4 Athlon 1
GHz and three Athlon 950 MHz with 512 Mbytes of memory
per machines. These machines run Linux RedHat 6.2. They
connected together with Myrinet Switch and Ethernet switch.

In the experiment, the purpose is to  measure the time used to
recovery from fault. In this test, we tested the system
responds time in three cases. In each case, there are three
services that are recovered from the artificial fault.  For the
first, case, we measure the recovery time when the system
has no load. For the second test, a system is load with
computation task. This computation load is generated from
Linpack benchmark program at problem size 200. Finally, we
test the system under I/O load condition. This I/O load has
been simulated using the reading and writing to disk file. The
elapse time is then measured starting from the termination
time of the services until the time that system service has
been fully recovered. The results are as reported in Table 2

and the CPU utilization has been reported in Table 3. From
the results, we can see that the recover process has happened
very fast.  The implementation consume very low CPU usage
which demonstrate that the implementation is quite efficient.
The increase in I/O and CPU load do effect the recover speed
but the clear result of the impact will need more study.

Table 1.  Recovery Time

  No.  of
services

N o
L o a d  
(sec)

CPU Load
(sec)

I/O Load
(sec)

1 3.960 12.782 6.840

2 4.061 19.056 17.760

3 4.794 19.458 16.249

Table 2. Percentage CPU of utilization

N o
Load

C P U
Load

I/O Load

%CPU of
Utilization

1.5-3 0.5-1 1.5-2

5. Conclusion
The contribution of this work is mainly the new proposed
concept well define architecture for HA on Linux cluster that
provides a basis for real working implementation.  In this
model, we clearly define a modular and scalable, HA model
that is easy to extend. The future work will include a better
and broader implementation of each part, the addition of
more intelligent logic that allows better and more automatic
discover and recover of fault, the prediction of potential
failure, and more study on performance and impact of
external factors to the recovery process.
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ABSTRACT – Detailed ab initio quantum mechanical calculations of a number of polythiophene
oligomers are carried out to ascertain relative stability of structures bonding through α and β carbons.
Energetics of dimers, trimers, tetramers, and pentamers with all possible linkages types are obtained from
fully optimized geometries.  This will determine the relative energy of α and β carbons linkages of the
oligomers. Final energy of the oligomers is calculated using different ab-initio basis sets   (3-21G and STO-
3G) of the polythiophene geometry.  Geometrical structures and energetics of thiophene oligomers are
presented.
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1. Introduction
Academic and industrial research groups around the world
have shown great interest in conjugated polymers particularly
polythiophene (PT) as an important class of electronic
material [2].  Early studies had shown that these materials
exhibit high electrical conductivities.

High conductivities, corrosion resistance, and low density are
among their properties that are beginning to find applications
in the fields of battery materials, electrochromic displays,
electromagnetic shielding, sensor technology, non-linear
optics, and molecular electronics [2, 3, 5].

Recently, a collaborative study between Niigata University of
Japan and MSU-IIT of the Philippines conducted a study on
the search of new semiconductor radiation detector by
fabricating a radiation detector prepared through
electrochemical synthesis using polythiophene doped with
tetraflouroborate [4].

Silicon (Si) has been commonly used as radiation detectors
[4].  It serves as vertex detectors of the interaction point and
decay point of short-lived elementary particles in B-factory
experiments in Kou Enerugi Kenkyushuo (KEK), Tsukuba,
Japan and other major experiments in the USA and Europe.
Since Si is very expensive to make into large silicon
semiconductor detector, they tried to study other potent
conducting polymers particularly polythiophene and
polypyrrole as radiation sensors. The films produced by these
polymers are strong, flat, thin, stable in the electron beam,

easy to process, and entails very cheap fabrication cost
compared to silicon.
Among these conjugated polymers, PT has been extensively
studied because it is one of the most attractive intrinsic
conductive polymers. It has good mechanical properties and
environmental stability in both doped and pristine form [4].
PT films can be easily prepared through
electropolymerization process.  During the process coupling
occurs primarily through the α carbon atoms of the
heterocylic ring since these are the positions of highest
unpaired electron π spin density and hence reactivity [3].

Theoretically, there are a small number of attempts to
comapare α-α, α-β and β-β and they are carried out mostly
in dimers of thiophene.  Non α - α′ linkages (e.g.  α-β′ and β-
β′ couplings) can occur to variable extends, causing breaks in
conjugation and hence, reduction in film conductivity.  Such
linkages are more profound in the later stages of
electropolymerization where the unpaired electron π spin
density of the α carbon atom of the oligomer approaches that
of the α carbon atom. [3].

Like polypyrrole (PPy), the neutral polythiophene as
observed in the IR in carbon 13 NMR spectra has shown that
α-α′ carbon linkages predominate [1, 6].   Thus, it is assumed
that the most probable coupling occurred during the
electrochemical polymerization is  α-α′ coupling [4].  This
study aims to investigate the assumptions previously
presented by experiments via computational analysis
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employing ab initio method by calculating the final energy of
the oligomers.

2. Computational Details
Intrinsic thiophene oligomers from dimer up to pentamer
were investigated using ab initio quantum mechanical
method.  The ab-initio quantum mechanical method involves
the molecular orbital calculations that employs Molecular
Orbital (MO) methods based upon the Schroedinger
hamiltonian expression for a multi-electron molecule
(equation 1). This expression eludes exact solution, hence a
variety of schemes have been made to obtain approximate
solutions. For the hamiltonian H, a set of wavefunctions ψ
exists that gives discrete energy solutions E for the molecular
system. This is a classic eigenvector-eigenvalue problem,
where the MO wavefunction eigenvectors correspond to the
MO energy eigenvalues [11].

EψHψ =                                                  (1)
The Hamiltonian [12], H is the total energy operator for a
system, and is written as the sum of the kinetic energy of all
the componenents of the system and the internal potential
energy.  For a single molecule, the total Hamiltonian can be
written as follows:
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The molecular spin orbitals χi(x) satisfy the
eigenequation  such that the Hartree Product wavefunctions
are products of  occupied spin orbitals, and thus an energy
which is a sum of individual orbital energies, as

                   )(xχ)(x)χ(x)χ(xχΨ nn3k2j1i Λ=                    (3)

                      E.εεεΨ|H|Ψ ηji =+++= Κ                   (4)

and the generalized wavefunction to give the N electron
Slater determinant is,
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Roothan’s [13] contribution is to use a set of basis
functions to expand the molecular wave function in terms of
a set of basis functions to recast the integro-differential
equations into a set of algebraic equations.  These basis

functions must span Hilbert space and be physically
adequate.  Thus the wave function looks like;

                            )r(χc iµiµi
ρ

∑=ϑ                 (6)

           1c 2
iµ =∑                                (7)

                               j)j);1(i0(idτji =≠=ϑϑ                              (8)

where ϕj are the basis functions  and ciµ are the expansion
coefficients.

Now minimize the total energy with respect to the
variational parameters νic subject to orthonormality of the

total wave function µννµ δχ|χ = .  This constraint appears

as Lagrange multipliers, written as µνε , in the minimization
plus the expansion in terms on Hilbert Space basis functions,
gives the Hartree-Fock-Roothan (HFR) algebraic equations to
solve for the variational parameters iνc , written as,

                             0c)Sε(F iν
ν

µνiµν =−∑                              (9)

where the Fock matrix µνF  and iσiλµν ccD ∑= , is the density

matrix and µνS is the overlap matrix which arises from the
non-orthogonality of the basis functions [13].

In matrix form, the HFR equations are of the following
form,
                                     SCEFC =                                      (10)

where C is he expansion coefficient matrix ciν and E is the
energy.  To solve equation 10, transform to  a standard eigen
value problem, solve, and then transform back [13].

The types of integrals needed are, one electron integrals
giving the overlap between different states, χµ and χν,

                                         iiµ
*
µµν r)dr()χr(χS

ρρρ
∫=                                                (11)

one electron kinetic energy integrals,

                   iiµ
2
1i

*
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2
1)[r(χT

ρρρ
∇−= ∫                        (12)

coulomb attraction between a single electron and the nuclei,

                    11ν
1A

A
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*
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Z)[r(χV

ρρρ
∑∫=                       (13)

and two electron integrals, one for the coulomb repulsion and
one for the quantum mixing due to indistinguishability of
particles.
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The system of  HFR equations are solved iteratively and
might be outlined as follows [13]:

(2)

(14)
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(a)  make an initial guess for ci

(b)  calculate µνF  and µνS

(c)  solve HFR equations for iε  and µνc

(d)  repeat steps (a)-(d) until  iε  and/or ic converge.
The form of the wavefunction ψ  varies with the level of
approximation used. It is very common for the linear
combination of atomic orbitals (LCAO) approximation to be
used, such as  all ψ ’s are made by combinations of Atomic
Orbitals (AOs) from the constituent atoms of the molecule.
The set of AOs used to make up the MOs is called the basis
set. Linear combinations of the AOs give a number of MOs
equal to the number of basis set orbitals, where the MO
eigenvectors form an orthonormal set according to the
equations  (equations 6, 7, 8) [11].

However, the actual mathematical treatment is more general
than this, and any set of appropriately defined functions may
be used. The basis set is a mathematical description of the
orbitals within a system (which in turn combine to
approximate the total electronic wavefunction) used to
perform the theoretical calculations.  Standard basis sets for
electronic structure calculations used linear combinations of
gaussian functions equation

                             
2αrlmn ezycx)r  g( −=

ϖ
á,                                    (15)

  
to form the orbital equation [10]

                     µ

N

1µ
µii χc∑

=
=ϕ .                                              (16)

         
For ab initio Molecular Orbital (MO) calculations, the
minimal level of basis set (termed single-zeta) uses both core
and valence AOs.  For ease of computational integration,
almost all modern ab initio computations approximate AOs
as summations of gaussian type orbital (GTO) functions
(equation 17). For higher-level work, complex basis sets have
been devised, using two or more shells composed of
summations of gaussian functions in order to simulate each
occupied shell of an atom (and often even the higher-lying
empty shells) [11]

                   
2

kra
kGTO ecψ ∑=  .                               (17)

         
The rationale behind using complex basis sets for ab-initio
computations is that any approximate set of MO eigenvectors

iψ  will yield a molecular energy that lies above the "true"
energy. This is due to the variational theorem, which states
that Eapprox is greater than Eactual in (equation 1) for
nonapproximate hamiltonian expressions H (in this case the
nonrelativistic, time-independent hamiltonian is appropriate).
The greater the flexibility of the basis set, the greater the
flexibility in the approximate MOs iψ , and the closer Eapprox

will come to Eactual. The cost for this greater level of accuracy
is an increase in the time required to run a computation, and
an increased complexity in interpreting the final result. These

time constraints can be very substantial for either medium to
large molecules, or for large basis set computations.
Therefore, ab initio theory is practically usable only for
certain types of problems in materials chemistry, even with
the present state of the art of fast programming algorithms
and ever-faster computers to run them [11].

In this study, a minimum basis set of STO-3G was initially
carried out.  This minimal basis set contains the minimum
number of basis functions needed for each atom [10].  It is
used to fixed-size atomic-type orbitals with three gaussians
primitives per basis function of this Slater-type-orbital that
approximates with gaussian functions. Furthermore, a larger
basis set was employed with split valence (3-21G) by
increasing the number of basis sets per atom.  It allows
orbitals to change size, but not to change the shape of the
oligomers. Larger basis sets more accurately approximate the
orbitals by imposing fewer restrictions on the locations of the
electrons in space [10].

All calculations were initially calculated on semi-empirical
method using HyperChem [7] suite of program and finally
carried out using GAMESS [8] system of programs running
at Sun Sparc station and Beowulf cluster.  Molecular
symmetry was applied throughout the entire program.

3.  Results and Discussion
Geometries for thiophene monomer, dimers, trimers,
tetramers and pentamers have been optimized at Hartree-
Fock level using STO-3G and 3-21G basis sets.  Some of the
different types of coupling from dimer up to pentamer are
shown in Figure 2.  As observed, pure α-α′ linkages showed
a planar conformation and linear chains, α-β′ bonding
showed slightly linear but purely planar and β-β′ couplings
showed a kink structure.

As shown in Figure 3, the coupling involving linear α-α′
structures manifested the lowest energy structure and
linkages involving α-β′ and β-β′ in all oligomers showed a
higher energy structure. However, some of the structures
were almost energetically degenerate to the lowest energy,
for example αα - αβ, βα - αα - αα and αα - αα - αβ - αα.

It turned out that the ground state of the resulting oligomers
depend mainly on the number of α or β type terminating
monomers but not on how they were ordered. For example, if
one of the monomers was connected to the central one by its
α carbon and the others through their β carbons, the other
possible combinations were almost energetically degenerate.

Bond angles
∠C3C2C1=112.383o

∠S4C3C2=111.929 o

∠H2C1C2=123.692 o

∠H8C3C2=127.093 o
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Figure 1.   Structures of thiophene monomer optimized using
3-21G-basis set.  Bond distances are given in angstrom (Å).

        

      

Figure 2.   Optimized geometry structure of (a) αα-linear  (b)
αβ-planar  (c) ββ-kink for dimers, trimers, tetramers,

pentamers.

Table 1. Relative energies (in eV) of linear combination of
dimer, trimer, tetramer and pentamer ground states.

                                      Dimer

                                    Trimer

TetramerNo. Coupling
Sequence STO-3G 3-21G

1 αα 0.000 0.000

2 αβ 0.107 0.040

3 βα 0.108 0.040

4 ββ 0.237 0.088

No. Coupling
Sequence STO-3G 3-21G

1 αα - αα 0.000 0.000
2 αα - αβ 0.074 0.043
3 αα - βα 0.088 0.037
4 αα - ββ 0.155 0.062
5 αβ - αα 0.098 0.065
6 αβ - αβ 0.159 0.097
7 αβ - βα 1.024 1.738
8 αβ - ββ 1.041 1.669
9 βα - αα 0.071 0.017

10 βα - βα 0.159 0.097
11 βα - ββ 0.250 0.152
12 ββ - αα 0.244 0.171
13 ββ - ββ 0.418 0.067

(a)

(a)

(b)

(b)

(c)

(c)

(a)

(a)

(b)

(b)

(c)

(c)
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Pentamer

No. Coupling
Sequence STO-3G 3-21G

1 αα - αα - αα 0.000 0.000
2 αα - βα - αβ 0.103 0.093
3 αα - ββ - βα 0.427 0.083
4 αβ - βα - αβ 1.480 1.462
5 αβ - ββ - αα 1.650 1.505
6 αβ - βα - αα 1.440 1.682
7 αβ - ββ - αβ 1.680 1.711
8 αα - ββ - αα 0.156 0.144
9 αα - ββ - ββ 0.438 0.166

10 αβ - αβ - αβ 0.147 0.092
11 βα - αα - αβ 0.073 0.054
12 βα - αβ - αβ 0.128 0.072
13 βα - βα - αβ 0.133 0.098
14 ββ - αα - αα 0.130 0.112
15 ββ - αα - ββ 0.197 0.128

No. Coupling
Sequence STO-3G 3-21G

1 αα - αα - αα - αα 0.000 0.000
2 αβ - αα - αα - αα 0.122 0.143
3 αα - αβ - αα - αα 0.089 0.105
4 αα - αα - αβ - αα 0.086 0.102
5 αβ - αβ - αα - αα 0.111 0.101
6 αβ - αβ - αβ - αβ 0.135 0.074
7 ββ - ββ - ββ - ββ 0.949 0.508
8 βα - ββ - ββ - ββ 0.671 0.297
9 ββ - βα - ββ - ββ 0.591 0.094

10 ββ - ββ - βα - ββ 0.688 0.259
11 ββ - ββ - ββ - βα 0.945 0.496
12 βα - βα - ββ - ββ 0.411 0.032
13 βα - βα - βα - ββ 0.161 0.037
14 βα - βα - βα - βα 0.125 0.010
15 βα - αα - αα - αα 0.060 0.079
16 βα - βα - αα - αα 0.082 0.055
17 βα - βα - βα - αα 0.104 0.033
18 αβ - ββ - ββ - ββ 0.945 0.495
19 αβ - αβ - ββ - ββ 0.671 0.283
20 αβ - αβ - αβ - ββ 1.543 1.543
21 αα - αα - αα - βα 0.087 0.105
22 ββ - ββ - ββ - αβ 0.487 0.112
23 αα - αα - βα - αα 0.089 0.105
24 αα - βα - αα - αα 0.086 0.102
25 αα - αα - βα - βα 0.110 0.082
26 αα - βα - βα - βα 0.129 0.057
27 ββ - ββ - αβ - ββ 0.613 0.126
28 ββ - αβ - ββ - ββ 0.688 0.259
29 ββ - ββ - αβ - αβ 0.401 0.108
30 ββ - αβ - αβ - αβ 0.172 0.101
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Figure 3.  Plot of the relative energy vs coupling sequence of
dimer, trimer, tetramer and pentamer

4.   Conclusion
The addition of a thiophene to a polythiophene backbone can
be achieved in a large number of ways depending on the
position along the chain as well as the orientation of the
monomer. The relative energies of the possible structures can
then be predicted by counting the types of thiophene rings.
Finally, it was observed that α - α′ coupling has the lowest
final energy among the thiophene oligomers; thus it is the
most stable coupling.
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A STRUCTURAL STUDY OF POLYTHIOPHENE COUPLING
THROUGH α AND β CARBONS: AN AB INITIO EVALUATION
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ABSTRACT – Detailed ab initio quantum mechanical calculations of a number of polythiophene
oligomers are carried out to ascertain relative stability of structures bonding through α and β carbons.
Energetics of dimers, trimers, tetramers, and pentamers with all possible linkages types are obtained from
fully optimized geometries.  This will determine the relative energy of α and β carbons linkages of the
oligomers. Final energy of the oligomers is calculated using different ab-initio basis sets   (3-21G and STO-
3G) of the polythiophene geometry.  Geometrical structures and energetics of thiophene oligomers are
presented.
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1. Introduction
Academic and industrial research groups around the world
have shown great interest in conjugated polymers particularly
polythiophene (PT) as an important class of electronic
material [2].  Early studies had shown that these materials
exhibit high electrical conductivities.

High conductivities, corrosion resistance, and low density are
among their properties that are beginning to find applications
in the fields of battery materials, electrochromic displays,
electromagnetic shielding, sensor technology, non-linear
optics, and molecular electronics [2, 3, 5].

Recently, a collaborative study between Niigata University of
Japan and MSU-IIT of the Philippines conducted a study on
the search of new semiconductor radiation detector by
fabricating a radiation detector prepared through
electrochemical synthesis using polythiophene doped with
tetraflouroborate [4].

Silicon (Si) has been commonly used as radiation detectors
[4].  It serves as vertex detectors of the interaction point and
decay point of short-lived elementary particles in B-factory
experiments in Kou Enerugi Kenkyushuo (KEK), Tsukuba,
Japan and other major experiments in the USA and Europe.
Since Si is very expensive to make into large silicon
semiconductor detector, they tried to study other potent
conducting polymers particularly polythiophene and
polypyrrole as radiation sensors. The films produced by these
polymers are strong, flat, thin, stable in the electron beam,

easy to process, and entails very cheap fabrication cost
compared to silicon.
Among these conjugated polymers, PT has been extensively
studied because it is one of the most attractive intrinsic
conductive polymers. It has good mechanical properties and
environmental stability in both doped and pristine form [4].
PT films can be easily prepared through
electropolymerization process.  During the process coupling
occurs primarily through the α carbon atoms of the
heterocylic ring since these are the positions of highest
unpaired electron π spin density and hence reactivity [3].

Theoretically, there are a small number of attempts to
comapare α-α, α-β and β-β and they are carried out mostly
in dimers of thiophene.  Non α - α′ linkages (e.g.  α-β′ and β-
β′ couplings) can occur to variable extends, causing breaks in
conjugation and hence, reduction in film conductivity.  Such
linkages are more profound in the later stages of
electropolymerization where the unpaired electron π spin
density of the α carbon atom of the oligomer approaches that
of the α carbon atom. [3].

Like polypyrrole (PPy), the neutral polythiophene as
observed in the IR in carbon 13 NMR spectra has shown that
α-α′ carbon linkages predominate [1, 6].   Thus, it is assumed
that the most probable coupling occurred during the
electrochemical polymerization is  α-α′ coupling [4].  This
study aims to investigate the assumptions previously
presented by experiments via computational analysis
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employing ab initio method by calculating the final energy of
the oligomers.

2. Computational Details
Intrinsic thiophene oligomers from dimer up to pentamer
were investigated using ab initio quantum mechanical
method.  The ab-initio quantum mechanical method involves
the molecular orbital calculations that employs Molecular
Orbital (MO) methods based upon the Schroedinger
hamiltonian expression for a multi-electron molecule
(equation 1). This expression eludes exact solution, hence a
variety of schemes have been made to obtain approximate
solutions. For the hamiltonian H, a set of wavefunctions ψ
exists that gives discrete energy solutions E for the molecular
system. This is a classic eigenvector-eigenvalue problem,
where the MO wavefunction eigenvectors correspond to the
MO energy eigenvalues [11].

EψHψ =                                                  (1)
The Hamiltonian [12], H is the total energy operator for a
system, and is written as the sum of the kinetic energy of all
the componenents of the system and the internal potential
energy.  For a single molecule, the total Hamiltonian can be
written as follows:
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The molecular spin orbitals χi(x) satisfy the
eigenequation  such that the Hartree Product wavefunctions
are products of  occupied spin orbitals, and thus an energy
which is a sum of individual orbital energies, as
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and the generalized wavefunction to give the N electron
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Roothan’s [13] contribution is to use a set of basis
functions to expand the molecular wave function in terms of
a set of basis functions to recast the integro-differential
equations into a set of algebraic equations.  These basis

functions must span Hilbert space and be physically
adequate.  Thus the wave function looks like;

                            )r(χc iµiµi
ρ

∑=ϑ                 (6)

           1c 2
iµ =∑                                (7)

                               j)j);1(i0(idτji =≠=ϑϑ                              (8)

where ϕj are the basis functions  and ciµ are the expansion
coefficients.

Now minimize the total energy with respect to the
variational parameters νic subject to orthonormality of the

total wave function µννµ δχ|χ = .  This constraint appears

as Lagrange multipliers, written as µνε , in the minimization
plus the expansion in terms on Hilbert Space basis functions,
gives the Hartree-Fock-Roothan (HFR) algebraic equations to
solve for the variational parameters iνc , written as,

                             0c)Sε(F iν
ν

µνiµν =−∑                              (9)

where the Fock matrix µνF  and iσiλµν ccD ∑= , is the density

matrix and µνS is the overlap matrix which arises from the
non-orthogonality of the basis functions [13].

In matrix form, the HFR equations are of the following
form,
                                     SCEFC =                                      (10)

where C is he expansion coefficient matrix ciν and E is the
energy.  To solve equation 10, transform to  a standard eigen
value problem, solve, and then transform back [13].

The types of integrals needed are, one electron integrals
giving the overlap between different states, χµ and χν,

                                         iiµ
*
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ρρρ
∫=                                                (11)

one electron kinetic energy integrals,
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coulomb attraction between a single electron and the nuclei,
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and two electron integrals, one for the coulomb repulsion and
one for the quantum mixing due to indistinguishability of
particles.
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The system of  HFR equations are solved iteratively and
might be outlined as follows [13]:

(2)

(14)



178

(a)  make an initial guess for ci

(b)  calculate µνF  and µνS

(c)  solve HFR equations for iε  and µνc

(d)  repeat steps (a)-(d) until  iε  and/or ic converge.
The form of the wavefunction ψ  varies with the level of
approximation used. It is very common for the linear
combination of atomic orbitals (LCAO) approximation to be
used, such as  all ψ ’s are made by combinations of Atomic
Orbitals (AOs) from the constituent atoms of the molecule.
The set of AOs used to make up the MOs is called the basis
set. Linear combinations of the AOs give a number of MOs
equal to the number of basis set orbitals, where the MO
eigenvectors form an orthonormal set according to the
equations  (equations 6, 7, 8) [11].

However, the actual mathematical treatment is more general
than this, and any set of appropriately defined functions may
be used. The basis set is a mathematical description of the
orbitals within a system (which in turn combine to
approximate the total electronic wavefunction) used to
perform the theoretical calculations.  Standard basis sets for
electronic structure calculations used linear combinations of
gaussian functions equation

                             
2αrlmn ezycx)r  g( −=

ϖ
á,                                    (15)

  
to form the orbital equation [10]
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For ab initio Molecular Orbital (MO) calculations, the
minimal level of basis set (termed single-zeta) uses both core
and valence AOs.  For ease of computational integration,
almost all modern ab initio computations approximate AOs
as summations of gaussian type orbital (GTO) functions
(equation 17). For higher-level work, complex basis sets have
been devised, using two or more shells composed of
summations of gaussian functions in order to simulate each
occupied shell of an atom (and often even the higher-lying
empty shells) [11]

                   
2

kra
kGTO ecψ ∑=  .                               (17)

         
The rationale behind using complex basis sets for ab-initio
computations is that any approximate set of MO eigenvectors

iψ  will yield a molecular energy that lies above the "true"
energy. This is due to the variational theorem, which states
that Eapprox is greater than Eactual in (equation 1) for
nonapproximate hamiltonian expressions H (in this case the
nonrelativistic, time-independent hamiltonian is appropriate).
The greater the flexibility of the basis set, the greater the
flexibility in the approximate MOs iψ , and the closer Eapprox

will come to Eactual. The cost for this greater level of accuracy
is an increase in the time required to run a computation, and
an increased complexity in interpreting the final result. These

time constraints can be very substantial for either medium to
large molecules, or for large basis set computations.
Therefore, ab initio theory is practically usable only for
certain types of problems in materials chemistry, even with
the present state of the art of fast programming algorithms
and ever-faster computers to run them [11].

In this study, a minimum basis set of STO-3G was initially
carried out.  This minimal basis set contains the minimum
number of basis functions needed for each atom [10].  It is
used to fixed-size atomic-type orbitals with three gaussians
primitives per basis function of this Slater-type-orbital that
approximates with gaussian functions. Furthermore, a larger
basis set was employed with split valence (3-21G) by
increasing the number of basis sets per atom.  It allows
orbitals to change size, but not to change the shape of the
oligomers. Larger basis sets more accurately approximate the
orbitals by imposing fewer restrictions on the locations of the
electrons in space [10].

All calculations were initially calculated on semi-empirical
method using HyperChem [7] suite of program and finally
carried out using GAMESS [8] system of programs running
at Sun Sparc station and Beowulf cluster.  Molecular
symmetry was applied throughout the entire program.

3.  Results and Discussion
Geometries for thiophene monomer, dimers, trimers,
tetramers and pentamers have been optimized at Hartree-
Fock level using STO-3G and 3-21G basis sets.  Some of the
different types of coupling from dimer up to pentamer are
shown in Figure 2.  As observed, pure α-α′ linkages showed
a planar conformation and linear chains, α-β′ bonding
showed slightly linear but purely planar and β-β′ couplings
showed a kink structure.

As shown in Figure 3, the coupling involving linear α-α′
structures manifested the lowest energy structure and
linkages involving α-β′ and β-β′ in all oligomers showed a
higher energy structure. However, some of the structures
were almost energetically degenerate to the lowest energy,
for example αα - αβ, βα - αα - αα and αα - αα - αβ - αα.

It turned out that the ground state of the resulting oligomers
depend mainly on the number of α or β type terminating
monomers but not on how they were ordered. For example, if
one of the monomers was connected to the central one by its
α carbon and the others through their β carbons, the other
possible combinations were almost energetically degenerate.

Bond angles
∠C3C2C1=112.383o

∠S4C3C2=111.929 o

∠H2C1C2=123.692 o

∠H8C3C2=127.093 o
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Figure 1.   Structures of thiophene monomer optimized using
3-21G-basis set.  Bond distances are given in angstrom (Å).

        

      

Figure 2.   Optimized geometry structure of (a) αα-linear  (b)
αβ-planar  (c) ββ-kink for dimers, trimers, tetramers,

pentamers.

Table 1. Relative energies (in eV) of linear combination of
dimer, trimer, tetramer and pentamer ground states.

                                      Dimer

                                    Trimer

TetramerNo. Coupling
Sequence STO-3G 3-21G

1 αα 0.000 0.000

2 αβ 0.107 0.040

3 βα 0.108 0.040

4 ββ 0.237 0.088

No. Coupling
Sequence STO-3G 3-21G

1 αα - αα 0.000 0.000
2 αα - αβ 0.074 0.043
3 αα - βα 0.088 0.037
4 αα - ββ 0.155 0.062
5 αβ - αα 0.098 0.065
6 αβ - αβ 0.159 0.097
7 αβ - βα 1.024 1.738
8 αβ - ββ 1.041 1.669
9 βα - αα 0.071 0.017

10 βα - βα 0.159 0.097
11 βα - ββ 0.250 0.152
12 ββ - αα 0.244 0.171
13 ββ - ββ 0.418 0.067

(a)

(a)

(b)

(b)

(c)

(c)

(a)

(a)

(b)

(b)

(c)

(c)
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Pentamer

No. Coupling
Sequence STO-3G 3-21G

1 αα - αα - αα 0.000 0.000
2 αα - βα - αβ 0.103 0.093
3 αα - ββ - βα 0.427 0.083
4 αβ - βα - αβ 1.480 1.462
5 αβ - ββ - αα 1.650 1.505
6 αβ - βα - αα 1.440 1.682
7 αβ - ββ - αβ 1.680 1.711
8 αα - ββ - αα 0.156 0.144
9 αα - ββ - ββ 0.438 0.166

10 αβ - αβ - αβ 0.147 0.092
11 βα - αα - αβ 0.073 0.054
12 βα - αβ - αβ 0.128 0.072
13 βα - βα - αβ 0.133 0.098
14 ββ - αα - αα 0.130 0.112
15 ββ - αα - ββ 0.197 0.128

No. Coupling
Sequence STO-3G 3-21G

1 αα - αα - αα - αα 0.000 0.000
2 αβ - αα - αα - αα 0.122 0.143
3 αα - αβ - αα - αα 0.089 0.105
4 αα - αα - αβ - αα 0.086 0.102
5 αβ - αβ - αα - αα 0.111 0.101
6 αβ - αβ - αβ - αβ 0.135 0.074
7 ββ - ββ - ββ - ββ 0.949 0.508
8 βα - ββ - ββ - ββ 0.671 0.297
9 ββ - βα - ββ - ββ 0.591 0.094

10 ββ - ββ - βα - ββ 0.688 0.259
11 ββ - ββ - ββ - βα 0.945 0.496
12 βα - βα - ββ - ββ 0.411 0.032
13 βα - βα - βα - ββ 0.161 0.037
14 βα - βα - βα - βα 0.125 0.010
15 βα - αα - αα - αα 0.060 0.079
16 βα - βα - αα - αα 0.082 0.055
17 βα - βα - βα - αα 0.104 0.033
18 αβ - ββ - ββ - ββ 0.945 0.495
19 αβ - αβ - ββ - ββ 0.671 0.283
20 αβ - αβ - αβ - ββ 1.543 1.543
21 αα - αα - αα - βα 0.087 0.105
22 ββ - ββ - ββ - αβ 0.487 0.112
23 αα - αα - βα - αα 0.089 0.105
24 αα - βα - αα - αα 0.086 0.102
25 αα - αα - βα - βα 0.110 0.082
26 αα - βα - βα - βα 0.129 0.057
27 ββ - ββ - αβ - ββ 0.613 0.126
28 ββ - αβ - ββ - ββ 0.688 0.259
29 ββ - ββ - αβ - αβ 0.401 0.108
30 ββ - αβ - αβ - αβ 0.172 0.101
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Figure 3.  Plot of the relative energy vs coupling sequence of
dimer, trimer, tetramer and pentamer

4.   Conclusion
The addition of a thiophene to a polythiophene backbone can
be achieved in a large number of ways depending on the
position along the chain as well as the orientation of the
monomer. The relative energies of the possible structures can
then be predicted by counting the types of thiophene rings.
Finally, it was observed that α - α′ coupling has the lowest
final energy among the thiophene oligomers; thus it is the
most stable coupling.
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ABSTRACT -- The aim of the present research and development work is to develop the computer 
program to simulate the steady two-dimensional compressible turbulent flow. The finite volume method is 
used to numerically solve the flow governing equations. The Navier-Stokes equations are solved for the 
velocity field and the SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation law of 
mass. Since all the variables are stored at the center of each control volume, the Rhie-Chow interpolation is 
used to avoid the decoupling between the velocity and the pressure. The corrected velocity field is used to 
solve the −k  and −ε equations. The eddy viscosity, that represents the influence of turbulence on the mean 
flow field, can then be calculated from those values of k  and ε  obtained. The energy equation is solved for 
the temperature field. The effects of temperature and pressure on the fluid density are taken into account via 
the equation of state. The boundary layer on a flat plate is employed as a test case because it is one of the 
standard benchmark problems for the validation of CFD software. The sequential-computing solver is first 
used to obtain the computed results. It is found that the computed results are in good agreement with the 
experimental data at subsonic speed. The parallel-computing solver is also implemented here and tested 
against the sequential-computing one. It is found that the parallel program can run faster than the sequential 
one up to 2.55 times for the best case. Furthermore, the governing equations are solved on the structured and 
body-fitted coordinates so that this computer program can be developed further for the simulation of flow 
over or inside any object of complex geometry in the future.
KEY WORDS Compressible Turbulence Flow, High Performance Computing, Parallel Solver

1. Introduction
Fluid flow involves many advanced applications in science,
engineering and technology. Understanding of the flow
behavior is therefore important for the design and
development of scientific and engineering innovations. In
fluid dynamics, the flow behavior is governed by the
continuity equation, the Navier-Stokes equations, the energy
equation and the equation of state. For compressible flow,
where the free-stream Mach number is higher than 0.3, the
effects of temperature variation on fluid properties are so
large that the fluid properties must be treated as variable.

To study turbulent flow, the continuity, Navier-Stokes,
energy and state equations can be solved directly by any
numerical method called Direct Numerical Simulation
(DNS). However, the simulation requires the large number of
grid points, volumes, elements or other form of sub-domains
to capture the characteristics of turbulent flow. Therefore, the
computation requires a supercomputer that have a large

storage to store all essential data and good computing power
to run the program as fast as possible. At present, the
supercomputer can only provide the solution for the turbulent
flow at low Reynolds number with simple geometries. In
other words, the turbulent flow in engineering applications
cannot practically be predicted and studied by this approach.
In general, the turbulent flow is predicted and studied on the
basis of mean quantities. By this way, the continuity, Navier-
Stokes, energy and state equations are essentially time-
averaged using the density-weighted technique. This
technique gives rise to some extra unknown terms which
need to be properly modeled. Turbulence models have been
developed and widely used with success over a wide range of
engineering applications.

The present work is aimed to develop the computer program
for the simulation of steady two-dimensional compressible
turbulent flow using the two-equation turbulence model.
However, the recent emergence of Beowulf cluster
computing technology, which is the use of commodity PC
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and high speed network to build a cost effective
supercomputer, has created a lot of interest around the world.
The potential speed increases by parallelizing the CFD
program to run on this plat form using portable standard
programming such as MPI can be immense. Hence, there is a
need to explore such technique to reduce the computation
time and to increase productivity gained. Part of this work is
performed according to that goal.

2. Governing Equations
Compressible flow is governed by the continuity, Navier-
Stokes, energy and state equations where all the fluid
properties are variable. For turbulent compressible flow,
these governing equations are essentially time-averaged using
the density-weighting technique and the resulting solution is
the mean quantities. This technique gives rise to the extra
unknown terms which cause a closure problem. This problem
can be solved using an appropriate turbulence model. For
steady two-dimensional mean flow, the governing equations
with the turbulence model can be expressed in terms of
tensor notation as follows:

2.1 Continuity Equation

0)u~(
x j
j

=ρ
∂
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where ρ  is the fluid density and ju
~  is the flow velocity.

2.2 Navier-Stokes Equations
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and turbulent-flow stresses respectively with the following
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where tµ  is the eddy viscosity and k  is the kinetic energy
of turbulence.

2.3 Two-Equation Turbulence Model of
Launder and Sharma (1974)

ε
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where µc  is the model constant, µf  is the damping function,

and ε  is the dissipation rate of k . The transport equations
for k  and ε  are modelled as follows:
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where kσ  is the model constant and D  is the extra term. For

compressible turbulent flow, ε  is split into two parts: sε
(Solenoidal dissipation rate of k ) and dε  (Dilatation

dissipation rate of k ). Thus,

ds ε+ε=ε

Sarkar, Erlebacher, Hussaini & Kreiss (1991) have proposed
that

s
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where tM  is the turbulent Mach number defined as
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with a  is the speed of sound. sε  is calculated from the
following equation:
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where ( εσ , 1cε , 2cε ) are the model constants, ( 1fε , 2fε )

are the damping functions, and E  is the extra term.

For the ε−k  turbulence model of Launder and Sharma
(1974), the model constants, damping functions and extra
terms are provided as follows:

09.0c =µ , 0.1k =σ , 3.1=σε , 44.1c 1 =ε ,

92.1c 2 =ε ,
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2.4 Energy Equation
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where Tk  is the thermal conductivity, vc  is the specific

heat at constant volume, tPr  is the turbulent Prandtl number

taken as 0.91, and te
~  is the total energy which is defined as

kKe~e~t ++=

where e~  is the internal energy ( T
~

ce~ v=  where T
~

 is the
temperature) and K  is the kinetic energy of the mean flow,

i.e. )v~u~(5.0K 22 += .

2.5 Equation of State

( ) ( )kKe~1P t −−ρ−γ=

where γ  is the specific heat ratio.

The fluid properties, µ  and Tk , of compressible flow can
be influenced by the variation of the temperature so that they
must be defined in terms of temperature as the following
relations:

2.6 Sutherland’s Law
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where the subscript ∞  denotes the value at free-stream.

2.7 Prandtl Number
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where pc  is the specific heat at constant pressure.

3. Numerical Method
The finite volume method is used to numerically solve the
governing equations which can be written in a general form
as follows:
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where φ  is the general dependent variable, Γ  is the

effective diffusion coefficient, and φS  is the source/sink
term of φ . To be able to simulate the internal flow with
variable cross-sectional area and the external flow past an
object of complex shape, the general form of the governing
equations is essentially transformed from the physical domain
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)y,x(  into the computational domain ),( ηξ  as the
following equation:
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Using the finite volume method, the computational domain is
divided into a number of control volumes. The transformed
equations can be integrated as follows:
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where φ
PS  is the mean value of φS  at the center P of each

control volume, and (e ,w ,n , s ) are the east, west, north
and south faces of each control volume. The convection
terms are approximated by the first-order upwind
differencing scheme and the diffusion terms are estimated by
the second-order central differencing scheme. Therefore, the
standard form of the finite volume equation can be obtained
as
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The standard SIMPLE algorithm is employed here to satisfy
the conservation law of mass. The continuity equation is not
solved directly with other governing equations. The p′ -
equation is solved instead to obtain the pressure correction
p′  and its value is used to correct the values of pressure and
velocities to satisfy the conservation law of mass. The p′ -
equation can be written in a standard form as follows:
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*U , *V  are calculated from the resulting velocities of the
Navier-Stokes equations, whereas
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In general, the standard SIMPLE algorithm is implemented
on the staggered grid system to prevent the decoupling
between the velocity and the pressure. However, the
staggered grid system is technically rather complicated for
programming and requires a large amount of computer
storage. This drawback becomes obvious when the computer
program is developed further for real-world applications. The
collocated grid system is employed in this work so that all the
variables are stored at the center of each control volume. The
problem of velocity-pressure decoupling is solved by the

Rhie-Chow interpolation where ( *eU , *
wU , *

nV , *
sV ) are

calculated from the appropriate pressure gradient.

In the current work, the boundary layer on a flat plate is
chosen as a test case and the implementation of the SIMPLE
algorithm and the Rhie-Chow interpolation must be slightly
changed to suit the flow problem. Physically, the pressure
field of this flow is constant and presumably known
throughout the flow domain. Therefore, the pressure
correction p′  obtained is used to correct the velocities only,
not to correct the pressure, because the pressure itself is
already known and constant. Moreover, the Rhie-Chow

interpolation is simplified to the linear interpolation of ( *eU ,

*
wU , *

nV , *
sV ) between grid nodes without any effect of

pressure gradient.

The algorithm for the simulation of turbulent compressible
flow can be summarized as follows:

(1) Start the computation with an initial guess of
velocities, pressure correction, turbulence kinetic
energy, dissipation rate of turbulence kinetic energy,
temperature, density and viscosity

(2) Calculate the Navier-Stokes equations for the
velocities

(3) Calculate the p′ -equation for the pressure
correction

(4) Correct the velocities by the pressure correction
(5) Calculate the k -equation for the turbulence kinetic

energy
(6) Calculate the ε -equation for the dissipation rate of

turbulence kinetic energy
(7) Calculate the energy equation for the total energy,

and hence temperature
(8) Calculate the density from the equation of state, then

the viscosity from Sutherland’s law, and the thermal
conductivity from the definition of Prandtl number

(9) Repeat from step (2) until the solution converges

4. Development of Parallel Computer
Program

Parallel computing is a technique of partitioning long
computation tasks into many sub-tasks that execute
concurrently on multiple computers. Many useful techniques
and algorithms can be found in parallel computing text such
as [14][15]. In general, to partition a sequential program to
run on cluster system, this program has to be analyzed using
the profiling program called “gprof” to discover the most
compute intensive part. Below is some example captured
from the result of gprof profiling.
%   cumulative   self              self     total
 time   seconds   seconds    calls  us/call  us/call  name
 30.81    678.05   678.05 2224080000     0.30     0.30
NavierStokes::Diff(int, int, double **, char, char)

 28.87   1313.32   635.27     1500 423513.33 661914.16
NavierStokes::EnergyEquation(void)

 11.15   1558.71   245.39     1500 163593.33 359517.83
NavierStokes::Momentum(double **, double **)

  5.63   1682.62   123.91      800 154887.50 326566.29
NavierStokes::epslEquation(void)

 4.75   1787.12   104.50     1500 69666.67 456301.14
NavierStokes::SIMPLE(void)

The obtained results show that “Diff” method are the most 
using and calling in this program.  However, Diff is a 
common subroutine that is called from other method. It turns 
out that “EnergyEquation” method call “Diff” method more 
than other method. Another long computation method is 
“Momentum” method, but “Momentum” method is called 
from “SIMPLE”. Thus the decision are made to parallelize 
the “EnergyEquation” ,“Momentum” and “SIMPLE” method. 
But some methods have relation with three methods. Thus, 
we must to parallelize them. The main code consists of two 
levels of iteration. For the first iteration, program computes 
the one equation until variable DeltaOverallResidual less than   
10–12. Within this loop has eight methods as SIMPLE, 
U p d a t e U V ,  O n e E q u a t i o n ,  U p d a t e M u _ t O n e E q ,  
EnergyEquation, EquationOfState, SutherlandLaw and 
CalThermalConductivity. Every 50 iterations will compute 
DeltaOverallResidual for using check condition in iteration. 
When program finish first iteration will prepare initialized 
data for second iteration. Second iteration, program will 
c o m p u t e  b y  u s e  t w o - e q u a t i o n  m e t h o d  u n t i l  
DeltaOverallResidual less than 10–14. Within loop have five 
methods as SIMPLE, UpdateUV, kEquation, epslEquation, 
UpdateMu_tTwoEq, EnergyEquation, EquationOfState,
SutherlandLaw and CalThermalConductivity. The pseudo 
codes of two main loops are as follows.
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 1               2       n-1Node

  Figure 1. Data Partitioning

   1                      2                     n-1Node

Figure 2. Overlapped Data of Each Node

In order to parallelize this code, we divide the data into
several parts using the column base partitioning approach.
The important issue involved in data partitioning is to
distribute the data to all nodes in a balanced fashion. A
simple way of partitioning data can be used effectively here.
For this program, the number of column is divided by
number of computing node. If there is any column left,
number of column in each node will be increases by one
column. Thus, each node will have the same amount of data
number to be processes.

         1                          2           n-1        nNode

Master                     Slave    Slave     Slave

Control signal (start,stop)

Figure 3. Communication Model

Data

do{
++iteration;

   Turbulent.SIMPLE();
   Turbulent.UpdateUV();

Turbulent.OneEquation();
Turbulent.UpdateMu_tOneEq();
Turbulent.EnergyEquation();
Turbulent.EquationOfState();
Turbulent.SutherlandLaw();
Turbulent.CalThermalConductivity();
if( iteration > 0  &&  iteration%50 == 0 ){

Turbulent.CalOverallResidual();
OverallResidualNew =

Turbulent.GetOverallResidual();
DeltaOverallResidual = fabs(
OverallResidualNew - OverallResidualOld
);
OverallResidualOld =

OverallResidualNew;
printf("\n%6d  OE %.2e ",iteration,

DeltaOverallResidual);
Turbulent.Display();

}
}while( DeltaOverallResidual > pow(10.0, -12.0) );
printf("\n\tSwitch to Two-Equations");
do{

++iteration;
Turbulent.SIMPLE();
Turbulent.UpdateUV();
Turbulent.kEquation();
Turbulent.epslEquation();
Turbulent.UpdateMu_tTwoEq();
Turbulent.EnergyEquation();
Turbulent.EquationOfState();
Turbulent.SutherlandLaw();
Turbulent.CalThermalConductivity();
if( iteration > 0  &&  iteration%50 == 0 ){

Turbulent.CalOverallResidual();
OverallResidualNew =

Turbulent.GetOverallResidual();
DeltaOverallResidual = fabs(
OverallResidualNew - OverallResidualOld
);
OverallResidualOld =

OverallResidualNew;
printf("\n%6d  OE %.2e ",iteration,

DeltaOverallResidual);
Turbulent.Display();

}
}while( DeltaOverallResidual > pow(10.0, -14.0) );
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4.1 Communication Model
For our approach, we divide the computing node into two
types: master node and slave node. The master node controls
the processing step of parallel task. It send signal to slave
node to start the computing process. Every 50 iterations,
master node will receive the error data that will be used to
compute the overall error. When overall error is lower than
the minimum value required, master node will send signal to
slave node to stop the computing process.  Master node also
computes the result using data that it has.  In contrast, the
main function of slave nodes is to compute the data that
belong to them. When they receive the start signal from
master node, slave node will start the computing process.
When they receive stop signal from master node, they will
stop the computing process and send result to master node.

4.2 Exchanging Data
The parallelization of this code has been done using MPI
standard and MPICH [16][17] implementation from Argonne
National Laboratory. For this program, there are many
exchange of boundary data between nodes. This is done using
MPI::COMM_WORLD.Send and
MPI::COMM_WORLD.Receive primitive in MPI. The
example statements excerpt from the code are as shown
below.

In this computation, we assume that each computing node is
ordered from left to right. The node that has rank less than
other will be located on the left side. The first node locates on
the left side of second node and so on. Next step is to identify
the communication pattern by locating the variables that need
to be updated. In the first loop consist of 8 method, every
method modify the value of variables. Example of this is the
SIMPLE method that computes the value of u, v, pCrtn,
uCrtn and vCrtn. Thus, each node must exchange value of u,
v, pCrtn, uCrtn and vCrtn. In the second loop, it contains 9

methods that update the value of variables. Thus, each node
must exchange this data properly.

5. Results and Discussion
Computations are conducted for laminar and turbulent
compressible flows, and input data are summarized in Table
1.

Table 1. Input Data

Parameter Compressible
Laminar Flow

Compressible
Turbulent Flow

maxξ 151 151

maxη 151 151

LRe 2,000,000 19,500,000

∞M 0.4, 0.6, 0.8 0.824

∞T  (K) 300 300

∞P  (Pa) 101,325.0 110,995.5

WT  (K) 300 Adiabatic Recovery
Temperature

Relaxation
Factor

0.5 0.5

where maxξ  and maxη  are the numbers of grid lines used

on the computational domain, LRe  is the Reynolds number
based on the length of the flat plate and the free-stream
velocity, ∞M  is the free-stream Mach number, ∞T  is the

free-stream temperature, ∞P  is the free-stream pressure,

WT  is the wall temperature and the relaxation factor is used
to stabilize the numerical scheme used.

5.1 Laminar Compressible Flow
Figure 4 shows the velocity distributions in which the
numerical solutions are compared with the analytical
solutions at three free-stream Mach numbers. The definitions
of the normalized cross-stream distance and stream wise

velocity are ∞∞∞ ρµ u/x/y  and ∞u/u
respectively. It is found that the numerical solutions are in
very good agreement with the analytical solutions at all free-
stream Mach numbers considered. For subsonic flow where
the free-stream Mach number is as high as 0.8, the velocity
distribution is not influenced by the Mach number.
Physically, the compressibility effect is so little that its effect
does not appear on the velocity distribution of the flow.

Figure 5 illustrates the temperature distributions where the
numerical solutions are compared with the analytical
solutions at three free-stream Mach numbers. The definition
of the normalized temperarure is ∞T/T  whereas the
normalized cross-stream distance has the same definition as
in Figure 4. The numerical solutions compared well with the

void SendRight(int var_id,NavierStokes *Turbulent,double
*buffer,int rank)
{
   long number;

Turbulent->GetArr(var_id,buffer,&number,Turbulent->
endxCV-6,Turbulent-> endxCV);
MPI::COMM_WORLD.Send(&number,1,MPI::LONG,ra
nk+1,NUMTAG+100+rank+1);
MPI::COMM_WORLD.Send(buffer,number,
MPI::DOUBLE,rank+1,NUMTAG+100+rank+1);

}

void ReceiveLeft(int var_id,NavierStokes *Turbulent,double
*buffer,int rank)
{

MPI::Status status;
long number;
MPI::COMM_WORLD.Recv(&number,1,MPI::LONG,
rank-1,NUMTAG+100+rank,status);
MPI::COMM_WORLD.Recv(buffer,number,
MPI::DOUBLE,rank-1, NUMTAG+100+rank ,status);
Turbulent->SetArr(var_id,buffer,Turbulent->startxCV-
7,Turbulent->startxCV-1);

}
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Figure 6(a) Velocity distribution of the turbulent
boundary layer on a flat plate;

Numerical solution of the present work

Figure 6(b) Velocity distribution of the turbulent boundary
layer on a flat plate;

Experimental data of Motallebi (1994)

analytical solutions at all three free-stream Mach numbers.
The difference between the numerical solution and the
analytical solution is larger as the Mach number is higher.
The maximum temperature is higher as the Mach number
increases, that is, from about 0.5% at Mach 0.4 to around
2.5% at Mach 0.8.

5.2 Turbulent Compressible Flow

Figures 6(a) and 6(b) show the velocity distributions of the
turbulent boundary layer on a flat plate at Mach 0.824 where
the numerical solution is compared with the law of the wall in

Figure 6(a) while the experimental data of Motallebi (1994)
is compared with the law of the wall in Figure 6(b). It is
found that both the numerical solution and the Motallebi data
are in good agreement with the law of the wall in a log-linear
region where 8)/uyln(5 ww <µρ< τ . In both figures,

*u  is the transformed velocity, which is defined by the van
Driest transformation as follows:
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with r  is the recovery factor ( 89.0r =  for turbulent flow)
and the subscript δ  denotes the edge of the boundary layer.

Figure 4. Velocity distributions of the laminar
boundary layer on a flat plate

Figure 5. Temperature distributions of the
laminar boundary layer on a flat plate



190

Figure 7(a) Velocity distribution of the turbulent
boundary layer on a flat plate;

Numerical solution of the present work
Figure 8(a) Velocity distribution of the

turbulent boundary layer on a flat plate;
Numerical solution of the present work

Figures 7(a) and 7(b) show the comparisons of the numerical
solution and the experimental data of Motallebi (1994) with
the following Maise and McDonald correlation respectively:
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where δ  is the boundary layer thickness and τu  is the

friction velocity, i.e. ww /u ρτ=τ . It is found that
both the numerical solution and the Motallebi data compare
very well with this correlation.

Figures 8(a) and 8(b) show the comparisons of the numerical
solution and the experimental data of Motallebi (1994) with
the following Fernholz and Finley correlation respectively:
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It is found that the numerical solution and the Motallebi data
are reasonably well compared with the Fernholz and Finley
correlation.

Figure 7(b) Velocity distribution of the turbulent
boundary layer on a flat plate;

Symbol for the experimental data of Motallebi (1994);
Line for the Maise and McDonald correlation

Figure 8(b) Velocity distribution of the turbulent
boundary layer on a flat plate;

Line for the Fernholz and Finley correlation
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5.3 Performance of Parallel Computer Program
To evaluate the performance of the system, parallel program
has been tested on AMATA Beowulf system. This system
consists of:

• 4  Athlon 950 MHz, 256 Mbytes RAM and  20
Gbytes Hard disk

• 4 Athlon 1GHz , 256 Mbytes RAM and 20 Gbytes
Hard disk

• Fast Ethernet Switch Interconnection between nodes

First, the test has been conduct by running sequential
program to measure the runtime. Then, parallel program has
been run on 2, 4, and 8 nodes consequently. The runtime of
parallel code has also been measured. The test has been
repeated several times for several problem sizes. The results
obtained are as depicted in Table 2. Also, the speedup curve
has been plotted and illustrated in Figure 9.

Table 2. Runtime results of the experiment

Test Number Sequential
 No. of Runtime

Grids (seconds) 2 nodes 4 nodes 8 nodes 2 nodes 4 nodes 8nodes
1 151*151 1065 1061.32 1206.02 1021.90 1.00 0.88 1.04
2 201*251 1856.6 1192.39 967.71 1236.52 1.56 1.92 1.50
3 251*151 3088 2142.85 1401.94 1373.27 1.44 2.20 2.25
4 301*151 5403 3230.65 2558.63 2506.05 1.67 2.11 2.16
5 351*151 7208 4645.10 2825.21 3161.77 1.55 2.55 2.28

Parallel Runtime Speedup

Figure 9. Plot of speed up results

From Figure 9, the parallel speed up shows this parallel
algorithm receives the maximum speed when it run on 4
nodes. When number of computing node increase, speed up
doesn’t increase too. Because speed up of 8 computing nodes
almost equal with speed up of 4 computing node. The
maximum speed up obtained is as high as 2.55 times of the
sequential execution speed.

However, as problem size increases, speed up will increase
with it. But speed up doesn’t increase follow to number of
computing nodes. Thus this algorithm will improve
computation/communication ratio for good performance.

6. Conclusions
Both laminar and turbulent compressible flows are simulated
in the present work. The flow is considered at subsonic speed
where the free-stream Mach number is as high as
approximately 0.8. The numerical scheme of the computer
program is validated using the laminar compressible
boundary layer on a flat plate as a test case. It is found that
the computer program is capable of simulating the laminar
compressible boundary layers accurately at three free-stream
Mach number considered. The turbulent compressible
boundary layer on a flat plate at Mach 0.824 is used as a test
case to validate the performance of the two-equation
turbulence model of Launder and Sharma. It is found that the
computer program can accurately simulate the turbulent
compressible boundary layer at subsonic speed. The parallel
implementation exhibits some moderate speedup. So, one of
the most important future work is to analyze the performance
of this parallel code and find out how to increases the
speedup of this application.
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Blurring of Shifts in the Multi-Shift QR Algorithm:
Numerical Experiments using UBASIC
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ABSTRACT – The multi-shift QR algorithm for approximating the eigenvalues of a full matrix is known
to have convergence problems if the number of shifts used in one iteration is large. The mechanism by which
the values of the shifts  are being transmitted from one bulge matrix to another has been discovered. In the
presence of round-off errors, however, the values of the shifts are blurred in certain bulge matrices causing
the QR algorithm to miss the true eigenvalues of the matrix. In this paper, we give the maximum number of
shifts that can be used in one iteration to keep the values of the shifts from blurring. We use the UBASIC
language, and specify the minimum level of precision that maintains well-focused shifts.
KEY WORDS – eigenvalues, QR algorithm, Schur upper triangular form, bulge-chase technique, Hessenberg
form, blurring of shifts
  
1. The Problem and its Background
Many mathematical softwares approximate the eigenvalues
of a square matrix using the QR algorithm. The QR algorithm
is  an iterative algorithm that approximates the Schur upper
triangular form of a matrix, and the eigenvalues of the matrix
emerge along the main diagonal of the Schur form. Provided
that exact arithmetic is used and a convergent shift strategy is
found , the QR algorithm  converges quadratically for square
matrices in general, and cubically for normal matrices in
particular [5].

Most implementation of the QR algorithm use the bulge-
chase technique introduced by Francis [3] in 1961. With this
technique, the matrix is first reduced to upper Hessenberg
form. Two iterations of the shifted QR algorithm are
effectively performed in one QR step. This is done implicitly
using  Householder reflections that create a bulge in the
matrix. The matrix is reduced back to upper Hessenberg form
by chasing the bulge down the matrix. This implicit
implementation of two QR steps in one iteration came to be
known as the double-step QR algorithm.

In 1989, Bai and Demmel [1] generalized the double-step QR
algorithm into the multi-shift QR algorithm. An arbitrary
number of iterations is performed simultaneously in one
multi-shift iteration.  Again the same bulge chasing
technique, generalized to accommodate any arbitrary number
of shifts, performs this implicitly.

While multi-shift QR algorithm looked promising, in 1991
Dubrulle [2] presented a number of numerical experiments
that show that the multi-shift QR algorithm does not perform
very well if the number of shifts  used in one multi-shift step
is taken too large.

In an attempt to shed light on this convergence problem,
Watkins [4] was able to  identify the mechanism by which the
values of the shifts are transmitted from one bulge matrix to
another. His main result was that the finite eigenvalues of the
matrix pencil B-µN are precisely the values of the shifts that

were used in the multi-shift step. Here B is the  bulge matrix
and N is the Jordan nilpotent matrix of the same order as B.

Further, Watkins has detected a phenomenon called  blurring
of shifts, where the values of the shifts are incorrectly
transmitted form one bulge matrix to another. Round-off
errors is the apparent cause. It turns out that the characteristic
polynomial of the matrix pencil B-µN, the finite zeroes of
which are the shifts, is highly sensitive to perturbations of its
coefficients. Since the values of the shifts are incorrectly
transmitted during the bulge chase, the QR algorithm misses
the true eigenvalues of the matrix.

2.  Objectives and Methodology
In the light of the observations of  Watkins [4], this study
investigates the phenomenon of the blurring of shifts using
extended precision arithmetic. We determine the maximum
empirical number of shifts that can be used in one multi-shift
step and its corresponding level of precision that keeps the
shifts from blurring. Three types of matrices were studied
with orders between 8 and 15 (very small). All computations
were done in UBASIC allocating a maximum of 250 words
per variable. All internal computations were done in 542
words per variable.

For each matrix of a given order, a set of shifts was used in
the multi-shift QR algorithm and the bulge matrices were
extracted from the iteration matrix. For each bulge matrix Bi,
the finite zeroes of the characteristic polynomial of Bi-µN
were computed and compared with the original values of the
shifts. We note the maximum number m of shifts that can be
used without exhibiting the blurring of shifts phenomenon
and the minimum number of words used for the fractional
part that can make this possible. This is determined as
follows: beginning with a reasonably high number of worfor
the fractional part, we continue to increase the number of
shifts until the algorithm exhibits blurring. Having
determined m, the maximum number of shifts, we begin to
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decrease the words allocated for the fractional part until the
algorithm begins to fail.

The three types of matrices studied were: random matrices
with integer entries taken from the set {0,1,2,…,99}, the
Hilbert matrix H=(hij) where hij=1/(i+j-1), and the tridiagonal
matrix tridiag(-1,2,-1) which arises in finite-difference
approximation of the second derivative.

3. Experimental Results
The tables below summarize our findings. The column
labeled “Max m” gives the maximum number of shifts in one
multi-shift iteration that were attained without exhibiting
shift blurring. The column labeled “Min words” gives the
corresponding minimum words per variable that can be used
to attain the well-focused shifts.

Random matrix (0-99):

Size Max m Min Words

8 6 10
9 7 15

10 6 15
11 6 10
12 9 20
13 5 8
14 5 8
15 7 10

Hilbert matrix:

Size Max m Min Words

8 6 14
9 7 20

10 4 18
11 5 24
12 4 25
13 4 28
14 4 30
15 4 34

Tridiagonal:

Size Max m Min Words

8 6 6
9 7 12

10 7 10
11 6 10
12 6 12
13 5 6
14 5 6
15 5 6

We also made two observations that were not reported in the
table. Firstly, some iterations start to exhibit shift blurring
during the middle part of the multi-step bulge chase. For

instance, with a random matrix of order 14, m=6, and 10
words for the fractional part, bulges B0  and B1 have well-
focused shifts, while B2 exhibits blurring. Secondly, some
shift blurring become focused as the iteration progresses, but
the error accumulates that the computed eigenvalues are too
far from the actual values.  Watkins [4] has also presented
this second observation as an open question.

4. Conclusions and Recommendations
We summarize below the  trends observed:

1. For matrices of order n > 12, the maximum m χ n/2.
This is generally observed for matrices of higher order.

2. Hilbert matrices require greater precision for the
fractional part.

3.  Tridiagonal matrices require fewer words for the
fractional part.

4. Some iterations exhibit blurring during the middle of
the bulge chase, and some blurring become focused as
the iteration progresses.

We recommend as possible future work a search for a closed
formula for the maximum number of shifts in one multi-shift
iteration.  In the light of conclusions 1 and 2, this closed
formula might be a function of the order and the condition
number of the matrix. A closed formula for the minimum
number of words that can be used to prevent the shifts from
blurring may also be found.
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ABSTRACT -- In August 2000 the High Performance Computing Research Group (AHPC) of the Ateneo 
de Manila University built an 8-node Beowulf- class computer designed for computational science applications. 
As more researchers and students in the University are trained in cluster computing, the need for building a 
better cluster arises. This year the AHPC proposes to build a large-scale graph-based symmetric cluster. The 
proposed high performance computing system will be a symmetric cluster with a single-switch latency and f lat 
networking neighborhood topology. The proposed design also features minimized cost and maximized 
bandwidth. This presentation will deal with mathematical and computational aspects of graph-based clusters, 
and design considerations for a large-scale symmetric cluster with a single-switch latency.
KEYWORDS -- symmetric, balanced and flat network neighborhoods, isomorphic graphs, bisection bandwidth, 
pairwise node bandwidth, regular graphs, switch latency, cluster computing, beowulf, parallel computing

1. INTRODUCTION
Cluster computing is becoming an accepted form of 
supercomputing. In universities, government institutions and 
commercial companies, there is a growth in the cluster 
installation base. In the international scene, there is a race to 
build the biggest and the fastest clusters.

The popularity of cluster computing is growing among 
scientific computing and research communities. It is also 
expanding in the commercial sector, and a large number of very 
large scale clusters are being deployed. However, according to 
Amdahl's Law, the speedup of a system is limited by the 
speedup of a single component in such a system. This is true in 
the case of cluster computing. It is not simply a case of adding
compute nodes to the cluster to make it perform better. Other 
factors, such as interconnection network, will cause a 
performance bottleneck.

To improve the performance of a supercomputing cluster, it is 
important to eliminate bottlenecks. Limitations in network 
switch sizes, latencies and other network devices do not make 

this task easier. The use of alternative neighborhood networks 
can help answer these network limitations.

In August 2000 the High Performance Computing Research 
Group (AHPC) of the Ateneo de Manila University built an 8-
node Beowulf- class computer designed for computational 
science applications[10,11]. As more researchers and students 
in the University are trained in cluster computing, the need for 
building a better cluster arises. This year the AHPC proposes to 
build a large-scale graph-based symmetric cluster. The 
proposed high performance computing system will be a 
symmetric cluster with a single-switch latency and flat 
networking neighborhood topology. The proposed design also 
features minimized cost and maximized bandwidth. This 
presentation will deal with mathematical and computational 
aspects of graph-based clusters, and design considerations for a 
large-scale symmetric cluster with a single-switch latency.
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2. THE NETWORK PROBLEM
Parallel computation is typically composed of tasks that are 
parallel and some tasks that are not. Parallel tasks are those 
tasks that can be accomplished simultaneously with or without 
active communication. Serial tasks are those tasks that have to 
be completed one after another in a proper sequence. Serial 
tasks are usually irreducible and are treated as fixed 
computational overhead and at times it can expand. Parallel 
tasks have ideal completion times like 1/N where N is the 
number of parallel tasks undertaken at the same time[5]. 
Parallel task, however, require a communications overhead 
between tasks. All of these are made formal in Equation 2 
referred to as Amdahl's Law and quantitatively corrected in 
books in parallel computation[5].

 (1)

(2)

This law strictly limits the amount of speedup that can be 
attained from a paralleled program. However, this equation 
does not consider some other factors such as  Tis  or the average 
serial time which includes time delays due to Inter-process 
communications, setup, initialization and other. Another factor 
is Tip which is the average parallel time spend by each 
processor performing tasks like initialization, setup and even 
idle time. With these in mind the more realistic form of 
Amdahl's Law is shown in Equation 2.2.

It can be seen that the speedup of the entire system is severely 
limited by this law. The communications overhead while is part 
of the computation can severely limit the speedup gained. Thus, 
a large number of cluster nodes cannot be justified if the 
network will simply reduce its benefits.

3. AGILA NETWORK DESIGN –
    A GRAPH BASED CLUSTER
We are proposing to enlarge the Athlon Beowulf cluster of the 
Ateneo High Performance Computing Group known as AGILA 
from the present set-up of 15 nodes to 256 nodes. Using a 4-
way motherboard, our new cluster system will have a total of 
1024 processors.

The topology of the cluster system we are proposing is based 
on 16 copies of a circulant graph of order 16 with jump sizes ±
1, ± 4, ± 7, 8. The vertices of the graph are labelled 0, 1, 2,…, 

15 such that vertex  u  is adjacent to the vertex  u ± 1,      u ± 4 
, u ± 7,  u + 8 (the sum is taken under modulo  t).

The next sections discuss the theoretical basis of our proposed 
topology.

3.1 A GraphBased -Cluster
Let  G  be a graph with vertices 0, 1, 2, . . . , t - 1 and let  G0 , 
G1 , . . . , Gm - 1 be  m  copies of  G. Then the vertices of   Gi  are 
labelled as  i, m + i, 2m + i, . . . , tm - m + i and the order of   
Gi is t. (Note that order of a graph means the number of 
vertices of a graph.)

Consider a cluster whose compute nodes are the vertices of the 
m  copies of  G. Let us partition the  mt  compute nodes of the 
cluster into  t  subnets such that each subnet  Ck  consists of the 
nodes  km, km + 1, km + 2, . . .  , km + m - 1. We connect the 
nodes of the cluster to  t  network switches S0 , S1 , . . . , Sk - 1
using the node-to-switch connection procedure given below.

Procedure NTS-1

Let   u   be a compute node belonging to subnet  Ck  . Then

NTS-1. connect node  u  to switch   Sk .

NTS-2. connect node  u  to  Sk 1  , Sk 2 , . . . , Sk 1−r ,  if   k   is 
adjacent to

vertice  k1 , k2  , . . . , kr – 1   in  G.

Let us denote the cluster based on  m  copies of a graph  G of 
order t and connected using the node-to-switch connection 
procedure by  CG (m, R, t)  where  R  is the set   {r0 + 1, r1 + 1, 
. . . , rt - 1 + 1} and each   rk   denotes the degree of vertex      k
in  G. If   r0 = r1 = . . . , rt - 1   G  is called a regular graph. An 
example of a regular graph is the circulant graph G(t; ± s0 ,          
± s1 , . . . , ± sr) such that the vertices are labelled as 0, 1, . . . ,   
t - 1 and each vertex   v   is adjacent to vertices   v ± s0 , v ± s1  , 
. . . , v ± sd  where addition is taken under modulo  t. If  t  is 

even, then  
2
t  ≡  

2
t  (mod t). Hence, if  sd  = 

2
t  when t is 

even, the regularity of the circulant graph is odd. Consider the 
following example.

NTS-1 accounts for 1 network switch for each node, while 
NTS-2 accounts for  r - 1  switches for each node.  Hence, each 
node in the cluster is attached to r  network switches. 
Therefore, there are   r   NICs installed in each node.

Theorem 1    Let  G  be a graph of order  t  and regularity       
r - 1. Suppose that the cluster CG (m, R,  t) uses s-port switches. 

Then  m ≤  





r
s  , i.e ., each subnet can have at most 





r
s   

compute nodes.
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Proof. The total available number of ports is  st. If  m  copies of 
the regular graph  G  are to be used, then the cluster uses  mrt
ports.

Hence,  mrt ≤  st ⇔  mr ≤  s ⇔  m ≤  
r
s .

Since  m  is a positive integer,  m ≤  





r
s .

Example 1

In Fig. 1, the cluster is based on 6 copies of  G(8; ± 1, 4). This 
is a 3-regular circulant graph and has 8 vertices. Since NTS-1 
connects a node to one switch and NTS-2 connects the node to 
three other switches, each node in the cluster needs 4 1-port 
NICs or 1 4-port NICs. If the cluster uses 24-port switches, then 
it must have  4

24  = 6 copies of the base graph. Hence, the 
cluster has 8× 6 = 48 compute nodes partitioned into 8 
components C0, C1, . . . , C7  where each component  Ck  has the 
six nodes km, km + 1, km + (m - 1). The total number of 
installed NICs is 4× 48 = 192. The cluster needs 8 network 
switches labelled as  S0, S1, . . .  ,S7.

A node symmetric cluster or network has no distinguishable 
node. The “view” of the rest of the network cluster is the same 
from any node. Rings, fully connected networks, and 
hypercubes are all node symmetric network. This property is 
similar to that of the vertex-transitive graph. Hence, a cluster  C
is node-symmetric (or vertex-transitive) if there exists an 
automorphism φ  from the cluster's node set  V (C) onto itself. 
If a cluster is node-symmetric we simply call it as a symmetric 
cluster.

Theorem 2 If G is a vertex-transitive graph, then the cluster  
CG (m, R,  t) is symmetric.

Proof. Let G be a vertex-transitive graph of order t. Define a 
mapping ϕ  from the vertex set of CG (m, R,  t)) onto itself by 
ϕ (km + i) = φ (k)m + i  where φ  is an automorphism of of the 
vertex set of  G  onto itself. Clearly, ϕ  is an automorphism 
from the vertex set of CG (m, R,  t) onto itself. Therefore, the 
cluster CG (m, R,  t) generated by the vertex-transitive graph G
is symmetric.

Theorem 3 If  G  has diameter 1 or 2, then every pair of nodes 
in CG (m, R,  t) has a common switch. Therefore, CG (m, R,  t)
has the  FNN  topology.

Proof. Let  u = k1m + i1  and  v = k2m + i2  be two distinct 
compute nodes in the CG (m, R,  t). If  k1 = k2, then the two 
nodes belong to Ck. Hence, they are joined by switch Sk. 
Suppose that  k1 ≠  k2. If  k1  and  k2 are adjacent in  G, then  u
and  v are joined by two switches. If  k1  and  k2 are not adjacent 
(only when diameter is not 1), then they have a common 

neighbor since G has diameter 2. Hence, u  and  v are joined by 
a switch. Therefore, CG (m, R,  t) has the FNN topology.

Figure 1. A cluster based on 6 copies of  G(8; ± 1, 4) cluster
CG (m, R,  t)

4. A PROPOSED GIGANTIC CLUSTER
DESIGN

In this section, we shall show a design of a symmetric FNN 
cluster with about 1000 processors. The base graph is a 
circulant graph with 16 vertices and jump sizes ± 1, ± 4, ± 7,8. 
See the graph in Fig. 2.

Since the base graph has t = 16 vertices, the cluster needs 16 
switches. Also, the base graph is 7 regular. It follows that each 
compute node needs two 4-port NICs or  r = 8.  On a 128-port 
100 Mbps Fast-Ethernet switches, the number of compute 
nodes per subnet is at most  8

128  = 16. Hence, m = 16. Each 
subnet corresponds to a network switch. Thus, the CG(16, 8, 16) 
cluster has 16× 16 = 256 compute nodes. Using 4-way 
motherboards, the CG (16, 8, 16) cluster can have at most 256×
4 = 1,024 processors.

4.1 Bisection Bandwidth of the GraphBased 
Cluster

A communication link between two nodes in a cluster using the 
FNN topology is the connection from one node to a switch and 
the connection from the switch to the other node. The number 
of communication links between two distinct nodes is defined 
as the pairwise bandwidth of the given pair.
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Figure 2. Circulant G (16; ± 1, ± 4, ± 7, 8)

The minimum number of communication links that must be 
removed to partition a network into two equal halves is defined 
as the bisection bandwidth of G is denoted by BBW (G). This 
type of partition is known as the bisection of the G.

The bisection bandwidth of a tree is one, since any partition 
cuts across only one communication links. The bisection 
bandwidth of a hypercube of order 2d (number of nodes) is      
2d - 1, since at least 2d - 1 communication links must cross any 
partition of a hypercube into two subcubes. The bisection 
bandwidth of a complete graph of order  p  is p2 / 4, if  p is 
even, or (p2 - 1) / 4, if  p  is odd.

Switches are the de-facto standard component for a cluster 
system. Switches are used to connect different nodes in such a 
way that each node is given a guaranteed bandwidth. A switch 
Sk with the nodes in component Ck determines a subnet of 
nodes of the graph-based cluster. Switch  Sk  is associated with 
vertex k in G. If two vertices  k1  and  k2  are adjacent in  G, 
then the subnets determined by  Sk 1  and  Sk 2 are also 
“adjacent”, because they share the same nodes in Ck 1  and Ck 2  . 
Hence, If the edge that is incident to  k1  and  k2  is removed, 
then the communication links between the nodes in Ck 1 and Sk 2
and between the nodes in Ck 2  and  Sk 1  are removed. There are 
2m such links. Hence, we have the following theorem.

Theorem 4 The bisection bandwidth of CG (m, r, t) is         2m
×  BBW (G).

The bisection width of Circulant G (16; ± 1, ± 4, ± 7, 8) requires 
at least 16 edges to partition the graph into two equal halves. 
See Fig. 3.

Hence the (bidirectional) bisection bandwidth of CG (16, 8, 16) 
is 2× 16× 16× 200 Mbps = 102.4 Gbps edges.

Figure 3. A Bisection of G (16; ± 1, ± 4, ± 7,8)

Theorem 5 Suppose that  t  is the total number of switches 
used, s be the total number ports used per switch and the 
cluster has  n  compute nodes. Then the average pairwise links 
between two compute nodes is

Proof. Since the cluster has t available switches with s available 
ports per switch, it follows that the total possible links of the 

cluster is 







2

s
×  t. The cluster has  n  compute nodes. Hence, 
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the total number of pairs of compute nodes is 







2

n
. Therefore, 

the average number of links between two nodes is

The average number of links of the CG (16, 8, 16) cluster is

=  3.98431373  or an average bidirectional

pairwise bandwidth of  796.862746  Mbps.

5. CONCLUSION
In this paper we have discussed the theoretical basis of our 
proposed topology for building graph-based symmetric clusters 
with single switch latency.
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ABSTRACT -- Low-latency communication system is crucial for the performance of parallel application
on Beowulf cluster systems since its reduced the overhead of important operation such as barrier
synchronization. This paper presents our work on the design and development of Myrinet driver for DP, low
latency communication system in cluster environment. This driver allows user to exploit DP capability on
fast message transmission on Myrinet network.

This driver is implemented as a loadable kernel module, which can be load or unload without modifying or
recompiling the OS kernel. The performance has been measure and clearly shows the good improvement
over traditional UDP transmission.

KEYWORDS -- Cluster System, Communication Latency Reduction, Myrinet, Linux Driver

1. Introduction and Related work
High bandwidth, low latency network communication
subsystem is essential for cluster system since many
important synchronization depends on the fast transmission
of short massages. By reducing the latency involved, parallel
message passing applications can gain much higher
performance on cluster system. Traditional Generic
communication protocol such as TCP/IP is too complex for
cluster systems since they are not designed to be a “local”
protocol in such system. Hence, many communication
subsystems are developed to be use in cluster systems. The
examples of such works are Directed Point[7], Active
Message[2], Fast Message[3], U-Net[4] and Virtual Interface
Architecture[5].

DP is one of the implementation that seems to be very
interesting in many aspects. This includes a well-protected
kernel level implementation, fast and low overhead system
call, well define and low overhead architecture. But the
problem is that current DP implementation only supports
FastEthernet, share memory, and ATM.

One of the most used network switch technology is Myrinet
from Myricom. Myrinet is a robust, scalable, and high
performance high bandwidth network technology. Myrinet
has many useful features to use in cluster such as high
bandwidth, ANSI standard, and scalability. Myrinet is fully
programmable at the NIC level. This facts is a motivation for
the development of a Myrinet driver for DP system on
Beowulf cluster so that users can fully exploit the
performance of  Myrinet-base Beowulf cluster with DP
technology.

The design of driver aims at achieving a low latency for short
message and high bandwidth for large message. To achieve
our goal, the complexity of original Myrinet driver from
Myricom [6] has been reduced and other functionality require
for the driver such as registering to DP, source route
configuration, memory map utility are added. The developing
Myrinet driver is still a challenging work due to the
programming complexity in kernel level. Hence, this is also
the motivation for the selection of GNU/Linux system as an
implementation platform since GNU/Linux is a free software
and all kernel source code is available.

2. Background
Directed Point (DP) is a communication subsystem for
parallel computing that comes from the research project at
University of Hong Kong. The DP communication subsystem
employs a high-level abstraction to express the interprocess
communication in a cluster. In DP model, each node in the
cluster is assigned a logical identity called Node ID (NID).
Each endpoint of the directed edge is labeled with a unique
Directed Pont ID (DPID). Each program can use an
association of 3 tuples {local DPID, peer Node ID, peer
DPID} to identify a communication channel.
The DP subsystem consists of three layers, namely,
application programming interface (API) layer, service layer,
and network interface layer. The DP API layer provides a
way to use DP system. The DP service layer is the core of the
DP subsystem that provides services for message delivery.
This layer is responsible for the delivering of messages from
user space to network hardware level.  It also helps deliver
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the incoming packets to the target DP end point. The DP
network interface layer provides an interface for DP service
layer to interact with the network hardware. Figure 1
illustrates the DP system architecture.

Figure 1. The architecture of DP communication subsystem

Myrinet is a switching technology that is widely used to
interconnection for high-performance cluster systems. Some
features of Myrinet are:

• Full-duplex 2+2 Gigabit/second links, switch ports,
and interface ports.

• Flow control, error control, and "heartbeat"
continuity monitoring on every link.

• Low-latency, cut-through, crossbar switches, with
monitoring for high-availability applications.

• Scalable to tens of thousands of hosts, with network-
bisection data rates in Terabits per second, and can
also provide alternative communication paths
between hosts.

• Host interfaces has build-in microcontroller called
LANai that execute a control program to interact
directly with host processes ("OS bypass") for low-
latency communication, and directly with the
network to send, receive, and buffer packets.

• Support any topology and protocol.

• Conform to American National Standard
ANSI/VITA 26-1998

Myrinet card has a memory space of 16 MB. LANai memory
is between address 0 to 0x800000. The block diagram of
Myrinet card is shown in Figure 2.

Figure 2. The block diagram of Myrinet NIC

3. Implementation of Myrinet Driver for
DP

Myrinet driver is designed to work s a network layer of DP.
The driver consists of 2 parts: the LANai control program
and Linux Host Driver. LANai control program is a program
that execute on LANai processor on Myrinet board. The
Linux host driver is a driver execute in Linux Kernel. The
Linux host driver and LANai control program communicate
using hardware level share memory.

In LANai, the memory available is a 2 MB SRAM
(expandable to 8 MB).  The LANai memory is divided into 7
sections as follows:

1. Myrinet control program region for Myrinet control
program (MCP). The size of this program in our driver is
about 256 kB. At the end of this region, it is a base stack
pointer. We have to move base stack pointer to this
address in order to use the rest of LANai memory. This
region if from 0 to 0x3ffff.

2. Blank region that acts as a guard between MCP and other
regions. This region is ranging from address 0x40000 to
0x4ffff.

3. Command region. This region allows host and LANai to
write and read the commands and status codes such as
sending command, busy flags and so more. This region
ranges from address 0x50000 to 0x5ffff.

4. DMA control block region. Myrinet NIC contains a
DMA controller. The controller uses chains of control
blocks stored in LANai memory to initiate DMA-
mastering operations. There are 2 chains, one for sending
and another one for receiving. This region is located at
the address 0x60000 to 0x6ffff.

5. Source route table region. This region is used to maintain
the source route table. System administrator has to
configure source route table for each node statically.
When sending a packet, LANai will search for a source
route for target host from DP header. This region is from
0x70000 to 0x7ffff. In this version, the driver supports 6
bytes source route. That means cluster can span to
maximum of 6 switches or a few hundred nodes. This
table can contain up to 21845 hosts.

6. Send buffer. This region is used to store the outgoing
packet to be sent. Only one packet can be stored in this
region at a time. MCP supports up to 65536 bytes of
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data. However, the current version of DP supports only
1500 bytes. This region is ranging from address 0x9000
to 0x9ffff.

7. Receive buffer. This region is used to store the incoming
packet. This region ranges from address  0x10000 to
0x10ffff.

For the driver to work, the LANai controller code has been
developed using C language. This C code is the compiled to
LANai machine code using cross compiler available from
Myricom. The LANai is programmed logic is a state
machine. Figure 3 shows the flowchart that explains the
LANai controller code logic.

Figure 3. Flow chart for LANai Send Receive Operation

For the Linux host driver, the driver consists of 4 main
functions: sending function, receiving function, memory-
mapped function, and source route configuration and
registration function. The operations of each function can be
briefly summarized as follows:
• Sending function responsible for the sending of outgoing

packet. This module is called directly by DP service
layer. The transmission of  a message works as follow:

1. Driver checks whether LANai is free.

2. Driver creates DP header in kernel memory.

3. Copy the header and data to LANai memory.

4. Wait until the send operation in LANai completed.

• Receiving function receives the incoming packet. LANai
will receive all incoming packet at all time. If there is an
incoming packet, the routine works the following way:

1. LANai checks that there is an incoming packet and
whether the incoming packet is a DP packet or not.

2. LANai set the size of incoming packet in DMA
control block and raises the interrupt to host driver.

3. Driver triggers DMA transfer of incoming packet
into host memory.

4. Driver calls DP service layer to dispatch incoming
packet.

• Memory-mapped function provides the mapping of all
16MB of LANai memory space into a part of the user
space. To use this function, user have to create a
character device file with predefine major number and
minor number to be 0. The function is used to debug
Myrinet.

• Source route configuration function provides a way to set
source route for each node. Source route is required for
the sending of packets to other node. In order to keep the
overhead low, the source route table are configure
statically. Source route configuration is registered in a
file /proc/net/myri_route. User can configure source
route using cat command to /proc/net/myri_route. This
file can also be read.

The driver itself is implemented as a loadable kernel module.
Hence, the driver can be loaded or unloaded from memory
without modifying or recompiling the kernel. In order to
support the listed functionally, driver composes of 7 major
modules, which are:

• Initialization module – this module responsible for
locating Myrinet NIC from a system using PCI function
called in Linux and gets the pointer to configuration
space if a Myrinet NIC is located. Next, the memory in
Myrinet NIC is mapped as a part of kernel memory, so
kernel can directly access the card. Finally, the routine
will initialize Myrinet hardware, clear, and check all
content of LANai memory.

• Loading module – this module load MCP program to
LANai memory. MCP code is programmed in C
language, which is compiled by LANai cross compiler to
LANai machine code. This machine code is then
converted into C array definition in order to simplify the
loading task. LANai executable file can be converted to
C array using “gendat” utility from Myricom and then
included into a driver source code. Loading task is
simplified to be only the copy of array content to LANai
memory.

• Sending module. This module is a major part of this
driver. Sending module is called by DP service region to
send a packet to another node.

• Interrupt service routine. This routine is another major
part of the driver. This routine is called when LANai
interrupts host. LANai will interrupt host only when an
incoming packet is a DP packet. This routine also help
copy the data from LANai memory to DP service layer
buffer.

• Character device and /proc Routine. This routine
provides a convenient way to directly access  the NIC.
User can directly access a whole NIC as though the NIC
is in user space using mmap system call as well as
generic read/write system call. /proc provide a
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convenient way to configure source route for that node.
This module will create /proc/net/myri_route.

• Post-initialization module. The main function of this
module is to register components such as interrupt
service routine to a kernel. After finish the registration
process, this routine will start the LANai operation.

• Clean up module. The driver can be unloaded from
kernel using the rmmod command. The rmmod command
will call clean up module to free all resources that are
allocated during the work. Hence, this module has to free
all resources before the driver are unloaded from kernel.
The resource cleaned are things such as memory,
interrupt line, /proc and so on.

4. Performance
The driver has been tested using 2 nodes from a Beowulf
cluster called AMATA. These two system has the following
setup: 1 GHz Athlon processor with 512 MB RAM connect
through Myrinet switch, Linux Kernel 2.2.16, and Myrinet
card model: M2M-PCI64A-2-50973 with LANai version of
7.2 and 2 MB board memory.

A ping-pong program has been developed to measure the
round-trip time for message size ranging from 8 bytes to
1024 bytes. The comparison has been made between the
newly developed driver and  the performance of  code  with
UDP over FastEthernet, UDP over Myrinet, and GM driver
over myrinet. The results are as shown in Table 1 and the
graph are plotted as illustrated in Figure 4. The time given in
Table 1 is in the unit of Microsecond.

Table 1. Comparison of UDP over Fast Ethernet, Myrinet
and DP over Myrinet

Message

 size

UDP

Fast

Ethernet

UDP

Myrinet

DP

Myrinet

GM

Myrinet

1 52.3 62.8 26.25 15.99

2 47.8 47.8 26.75 15.98

4 48.5 47.8 27 16.02

8 48.0 47.0 27 16.02

16 46.8 47.0 27 16.02

32 48.5 48.0 27.25 15.96

64 51.8 49.0 28.25 16.78

128 53.5 52.5 29.75 19.98

256 58.0 61.8 36.5 30.18

512 68.5 68.3 40.25 38.42

1024 88.3 88.5 51.5 55.16

For the new driver, the graph in Figure 4 clearly shows a
much lower latency compared to usual UDP over both
Myrinet and Fast Ethernet.  When compared with GM driver
from Myricom, for small message size, GM driver is a little
bit faster (about 10 Microsecond) that our DP driver. The DP
driver has slightly lower latency when message size is  larger
than 512 bytes. The time different may cause by many
factors. One of the most important  factor is how fine tune the
code has been done. The logical step to further fine tune the
code is to profile them in more detail and  look at the code
tuning at assembly language level.
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5. Conclusion and Future Work
In this paper, an implementation of Myrinet driver for DP
system has been discussed with the experimental results.
The techniques used in developing the  driver have been
explained. From the experimental results, the newly
developed driver shown a satisfactory reduction of
message latency although, there seems to be slight
problem that slow down the Myrinet hardware
transmission.

In the future, this driver will be used as a communication
subsystem under a planned Pico-MPI that will be
developed later. This implementation aims to explore the
full optimize of message passing implementation from
user space level to kernel level which has a high potential
to generate fast and compact experimental MPI
implementation.
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ABSTRACT -- Large production volume of the devices results in very low equipment cost based on 
Ethernet Technology. Advances mix-signal VLSI chip, DSP and analog signal, lead to two order of 
magnitude of bandwidth improvement in the Ethernet Network. The performance of the Ethernet 
technology is further enhanced by the development of Ethernet switches in which the aggregated 
bandwidth is much larger than the broadcast hub. The large scale clusters interconnect using Ethernet is 
considered as a economical solution. The Ethernet topologies for massively parallel clusters are discussed in the 
paper. Based on classical network topologies, we proposed Stack Ring and Stack Mesh topologies for the large 
systems. The stack of Ethernet switch is considered as a single lump node and connected using ring and mesh
topologies. A set of the processors are assigned to perform the forwarding tasks. The topology definitions are 
defined and the IP assignment algorithms for both ring and mesh networks are presented. The effects of 
forwarding overhead is evaluated and HPL benchmark was tested on the system.
Keywords -- Cluster of workstations, network topology, Ethernet, high performance computing.

1. Introduction
A parallel high performance computing platform is made more 
accessible by interconnecting a group of workstations via a 
high speed interconnection network [1, 2, 3]. Examples of 
applications that can benefit from a cluster of computers, 
include computational fluid dynamics, weather forecast, 
bioinformatics, transaction computing, and Internet information 
servers. A Beowulf-class cluster [4] adopts commodity 
products, both hardware and software, to construct high 
performance parallel systems. It has been estimated in [5] that 
there are currently more than 100,000 clusters around the globe. 
The improvement in microprocessor and network technologies 
further drives the realization of these clusters.

A network with low latency and high bandwidth is required to 
sustain high performance in multicomputers [6]. These systems 
require that the network latency is in order of a few micro 
seconds and bandwidth is in order of a few Gbps. System area 
networks (SANs) [7, 8, 9, 10], are designed to transfer 
information at very high data rate in a relatively short distance. 
Although SAN offers very low latency and high bandwidth, the 
price of the SAN is expensive. Currently, the cost of a single 
SAN network interface card can exceed the cost of the 
computing node itself. ATM technology is another candidate as 
cluster interconnect. The cost of ATM equipments is still 
relatively high. Comprehensive treatments on interconnection 
networks for multicomputers is presented in [11].

The Ethernet technology is a strong candidate when the cost is 
considered as an important design requirement. Because of 
commodity products has very large production volumes the 
price of Ethernet devices is relatively low. The bandwidth of 
Ethernet technology has evolved from 10Mbps, 100Mbps, and 
1Gbps where 10Gbps Ethernet is around the conner. The 
performance of current generation Ethernet network is lower 
than that of system area networks due to hardware speed and 
heavy communication library [12]. Higher bandwidth in the 
next generation hardware and supporting some of the 
communication protocol in the network interface cards will 
reduce the performance gap between the Ethernet and SANs. 
However, Ethernet-connected clusters have proven to be 
suitable for computational intensive applications and have been 
widely implemented [13].

Carrier Sense Multiple Access (CSMA), adopted in Ethernet, is 
a contention-based protocol in which network performance is 
severely degraded in high volume traffic. The collision problem 
is partially solved using hardware switch [14] at the data link 
level. Ethernet Switch has more aggregation bandwidth 
compared to the broadcast bus where, with no output port 
conflict, multiple communication messages can be exchanged 
in parallel. Most of the Ethernet devices today are shipped as 
switch-based devices. The contention Ethernet hub is obsolete 
from the market. In [15], multiple network interface units are 
implemented in the computing nodes to increase aggregate 
bandwidth. The channel bonding technique was proposed to 
provide alternative paths from the source to the destination 
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where the computing nodes are connected in the mesh-like 
topology.

This paper investigates the Ethernet topologies for large scale 
cluster interconnections that take advantage of contemporary 
consumer switching devices. There are several interesting 
issues in exploring Ethernet technology as an interconnection in 
closely connected cluster. A certain class of Ethernet switches 
has stackable capability. A set of Ethernet switches can be 
connected together using special backplane connection cables. 
The number of ports is multiply increased using this technique 
without performance degradation. We consider a group of 
stackable switches as a basic building block. The scalability of 
the Ethernetconnected cluster is therefore limited by the 
number of ports in one stack of switches, typically 80-120 
ports. An Ethernet network for a large cluster requires more 
complicate details of implementation to maintain performance. 
Two classical network topologies, ring and mesh, are applied to 
the stacks of Ethernet Switches. We propose the Stack-Ring 
(SR) and the Stack-Mesh (SM) as interconnection topologies 
for Ethernet-connected massively parallel clusters. The SR/SM 
interconnects groups of stackable switches in ring/mesh with 
wrap around links. All destinations are being covered by 
assigning routing tasks to the nodes in a distributed manner. 
Beowulf-class clusters can be configured using regular IP 
addressing and forwarding schemes. The forward selection and
routing setup schemes are presented for the proposed 
topologies. The communication overheads associated with the 
proposed topology were measured and its scalability is 
evaluated. The performance results of the real applications 
based on HPL benchmark were tested and compared.

This paper is organized as follows. Section 2 presents 
preliminaries. The proposed Ethernet topologies are discussed 
in Section 3. The network parameters and performance are 
compared in Section 4. Concluding remarks are drawn in 
Section 5.

2. Preliminaries
A cluster is a collection of workstations interconnecting via an 
interconnection network. Figure 1 (a) shows the general 
architecture of a cluster. A computing node is an autonomous 
computer which has its own processor(s), memory, hard drive, 
network interface, shown in Figure 1 (b). Communication 
between computing nodes is accomplished by passing 
messages. The performance of these computers (nodes) varies 
from the PCs to the high-end workstations. Due to high 
aggregation bandwidth and lower cost, the Ethernet switch is 
usually adopted as a core network devices. The developments 
of parallel applications can be efficiently achieved using 
parallel programming development platforms such as PVM [2] 
and MPI [16]. The system softwares that support networking 
and parallel programming need to be install on all the nodes. 
Another important service provided by the operating system is 
the network file system (NFS) that transparently services the 
file system to all the computing nodes.

Figure 1. Cluster architecture: (a) Clusterarchitecture,
(b) Computing node architecture

Relevant terminologies and network parameters are defined as 
follows. A cluster interconnection network, G is a strongly 
connected graph, G(V,C), where V represents the set of vertices
and  C  represents a set of physical links connecting the nodes. 
A set of vertices  V  in the cluster is divided into two sets, a set 
of nodes (computers) Nc and a set of switches Ns. A node 
degree  Ic  is the number of network interface at each node and 
a switches degree  Is  is the number of ports at each switch. The 
switch backplane has peak bandwidth of SP. The maximum 
number of switches in a single stack is equal to  SKn. A group 
of switches in a single stack is considered as a lump switching 
device called Stack Switch Box (SSB). The maximum number 
of ports in one SSB is therefore equal to  Is× SKn.

The network diameter  D  is a shortest distance between any 
two remotest nodes in the network. Each link has b bit-per-
second bandwidth. Bisection Bandwidth BW is the amount of 
information that can flow between two equal halves of the 
nodes in the network [11]. The performance metrics for cluster 
interconnects include communication latency and message 
throughput. The communication latency is the time elapsed 
between the initiation of the message and the reception of the 
entire message at the destination. The message throughput is 
the number of the messages delivered per unit time.

3. Ethernet Topologies
In this section, we present several Ethernetconnected topologies 
as interconnection for massively parallel clusters. For the 
completeness of the paper, some materials from [17] are 
reiterated.

3.1 Star Topology
In a small cluster, the nodes can be interconnected using a 
single Ethernets switch, as shown in Figure 2 (a) where there is 
only one switch delay between any nodes. The switch entity 
can be either single switch or a group of stackable switches. A 
message is first forwarded from the source node to the switch 
and then from the switch to the destination node. Only one 
network interface (Ic = 1) is required at each node. The 
maximum number of nodes  Nc in the cluster is therefore 
limited by the number of switch ports  Is,  typically 12-36 ports.
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The Ethernet switches usually offer fully connection backplane 
where, in absent of output port conflict, all messages can be 
concurrently forwarded without contention.

We can increase bandwidth of the system using additional 
switches and network interfaces. The cluster can be configured 
such that the traffic is distributed among these interfaces. As 
shown in Figure 2 (b), each node is equipped with two network 
interfaces. The traffic can be distributed by equally dividing the 
nodes that generate messages to each interface or by 
differentiating traffic into subclasses. Two important classes of 
traffic in the cluster are intra-node communication and NFS 
communication. Separate intra-node and NFS communication 
enhances performance of the system especially for applications 
with a lot of file activities [18]. The number of interfaces  Ic  is 
limited by the number of I/O slots at the node, typically 4 to 6 
PCI slots.

Figure 2. Cluster interconnection: (a) Simple cluster
connection, (b) Separate network for NFS.

A certain type of Ethernet switches has stackable capability. 
The stackable switch has a backplane connection for 
interconnecting a group of switches together. In some 
technologies, the backplane bandwidth of an SSB still able to 
handle full connectivity. In current technology, four to seven 
switches can be stacked together. The number of nodes in a 
single SSB cluster is therefore in range of one hundred nodes.

3.2 Tree Topology
The size of the cluster can be exponentially scaled up by 
interconnecting switches according to the tree topology. The 
routing between the nodes is accomplished by switch learning. 
The 3-level tree network is presented in Figure 3 (a). In M-level 
tree, the nodes are connected to the (M - 1)-level switches. At 
least one port in the (M - 1)-level switch is used to connect 
upward to the root.

Figure 3. Tree topology.

The tree topology can provide connection up to very large size 
cluster. The maximum number of nodes in the system can be 
represented by  Nc = (Is - 1)(M) + (Is - 1)(M - 1) nodes which is 
astronomically large even for a small number of tree levels. The 
tree topology is not suitable for communication intensive 
applications since links that connected toward the root node 
become bottlenecks in the communication paths between nodes
in the different switches. Some switch technologies allow a set 
of links to be bundled. Using bundle links, a cluster can be 
build according to fat tree topology which alleviates the 
bottleneck problems. However, the number of bundled links is 
bounded by two to four links.

3.3 Stack-Ring Topology
As previously mentioned, the scalability of both single-hop and 
tree topologies is limited. Based on the ring topology, we 
propose a Stack-Ring topology (SR) to build a large scale 
Ethernet-connected cluster. Figure 4 shows the 5-stage SR 
network. In the SR topology, the computing nodes responsible 
for not only executing applications but also forwarding 
messages. The SR network has St stages. Two network 
interfaces are implemented at each node labeled as East (E) 
interface and West (W) interface. A single SSB belongs to one 
stage. The SSB  i (i ∈  (0, . . . , St - 1))  services communication 
requests from the nodes at the stage  i  and  1−i mod St. The 
dashed oval in Figure 4 show the group of nodes serviced by 
the SSB in the stage 1. Each stage has the maximum of  Nr

nodes which is equal to 
2

ns SKI ×
. The node  r  at the stage  i

is labeled as (r, i) where  0 ≤  r ≤  (Nr - 1) and  0 ≤  i ≤  (St - 1).

The traffic is divided into two classes, intrastage traffic and 
inter-stage traffic. The intra-stage traffic is the communication 
between the nodes within the same SSB, accomplished via the 
hardware Ethernet switch. The inter-stage traffic is the 
communication between the nodes that do not have direct data 
link level connections. For interstage communication, the nodes 
are responsible for forwarding parts of messages to their 
destinations. The message forwarding process is performed in 
software. Since the software routing incurs higher overhead 
compared to hardware routing, the shortest path from the  



208

Figure 4. Stack Ring topology (SR): The topology consists of 5 stages with wrap around communication links. Each computing
node has two network interface called East channel and West Channels.

source to the destination is selected using the algorithm shown 
in Figure 5.

The algorithm selects the interface that leads the destination 
with the minimum number of hops. The relative distance from 
the source to the destination is compared to provide routing 
information. For example, consider the nodes in the stage 1, 
Figure 4, the interface Wis selected for destinations belong to 
stage 0 and 4 and the interface  E  is selected for destinations in 
the stage 2.

Assuming that TCP/IP protocol is adopted in communication 
subsystem in the cluster, every node  (x, i)  is assigned an IP 
address to each interface. The nodes within the same stage are 
in the same subnetwork with IP:[10.10.i.x] for the interface A 
and IP:{[10.10.(i - 1).x], i ≠  0 and [10.10.(St - 1).x], i = 0} for 
the interface W. Hence, this IP configuration can support up to 
127 nodes at each stage which covers available ports in the 
stack switch configurations. The routing table at each node is 
assigned according to information obtained from the interface 
selection algorithm. The load balancing of forwarding tasks is 
managed by the following scheme. The xth node restricts the xth

nodes of the next/previous stage as its gateways to route 
messages to the nodes in other stages. Therefore the forwarding 
tasks are evenly distributed among all the nodes.

The table 1 shows an example of routing table assignment for 
the nodes in the stage 1.

Table 1. IP Forwarding table in the SR network.

3.4 Stack-Mesh Topology
The scalability of the SR topology is limited by the network 
diameter. The communication delay incurred in software 
forwarding process through the ring can degrade the 
performance if the message has to pass a large number of 
stages. Several popular topologies are classified as orthogonal 
topology. The nodes in the orthogonal networks can be 
arranged in the orthogonal n-dimensional space [11]. Due to 
their scalable properties, the orthogonal n-dimensional 
topologies are the basic topologies used in most contemporary 
multicomputers. Two important orthogonal n-dimensional 
topologies are the n-dimensional mesh and k-ary n-cube 
topologies and are defined as follows [6]:

Definition 1: An n-dimensional mesh network is defined as an 
interconnection network that has k0× k1× k2×  . . .  × kn - 1  
nodes where ki is the network radix of dimension i and n is the 
network dimension. The particular node is identified by the 
position in each dimension which can be represented by vector 
(x1, x2, x3, . . . , xn). Two nodes, (x1, x2, x3, . . . , xn) and           
(y1, y2, y3, . . . , yn) are neighbors to each other if and only if 
there exists an  i  such that  xi  =  yi + 1, and  xj = yj for all i ≠  j.

Definition 2: An k-ary n-cube network is de- fined as an 
interconnection network that has n dimensions having k nodes 
in each dimension. The particular node in k-ary n-cube is 
identified by the position in each dimension which can be 
represented by vector (x1, x2, x3, . . . , xn). Two nodes, (x1, x2, x3, 
. . . , xn) and (y1, y2, y3, . . . , yn) are neighbors to each other if 
and only if there exists an i such that xi  =  (yi + 1) mod k , and 
xj = yj for all i ≠  j. There are wraparound channels in the k-ary 
n-cube, with are not present in the ndimensional mesh 
networks. If k = 2, then every node has n neighbors. If k > 2, 
then every node has 2n neighbors.
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Figure 5. An interface selection algorithm for Stack-Ring topology.

The SM topology conforms to the k-ary 2-cube network since 
the k-ary n-cube network is regular and symmetric since all the 
nodes are identical compared to formal definition of the Mesh 
network. The node degree in the mesh network depends on its 
location. The utilization of channels in the center area of the 
mesh is higher than the channels near the edges. Figure 6 shows 
the four by four Stack-Mesh Topology (SM). The computing 
node has four network interfaces connected to the nearby SSBs. 
Interfaces are labeled as N, E, S, and W, according to their 
directions. The computing nodes in the systems is addressed as
(x, i, j). x represents the node’s rank in the group. The node 
group is surrounded by the dash line in the Figure 6. The 
location of the group of nodes in the network is specified by   
(i, j).

There are two issues need to be considered in the configuration 
of SM network, addressing and distribution of forwarding task. 
Assuming that the cluster adopts IP protocol in the message 
passing communication, the IP subnetwork is assigned to each 
node group. There are several approaches in assigning the IP 
addresses to SM network. We selects a simple method to ease 
of configuration. The node (x, i, j) is assigned the IP address of
[10, j, i, x]. Using this IP addressing scheme, the SM network 
can scale up to 256× 256 mesh.

The forwarding table can be filled up using the algorithm 
shown in Figure 7. The shortest paths from the source to the 
destinations are selected. The message follows the dimension-
order path in which the X dimension is traversed first and 
followed by the Y dimension. Similar to SR network, the 
forwarding tasks are distributed among the node. The gateways 
for the node [x, x, x, i] are configured according to the scheme 
in the Figure 7 with the IP address of [y, y, y, i] . The number of 
entries in the forwarding table is equal to the product of N and 
M.

4. Performance Comparisons
Both hardware switches and software forwarding are adopted in 
both SR and SM networks. To have better understanding on the 
overhead incurred in software forwarding, we have evaluated 
several communication subsystem performance tests on 
different network configurations using Netpipe. The maximum 
cluster size based on current technology is estimated for each 
topology. The HPL benchmark were tested and their results are 
discussed in the last part of the performance comparisons.
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Figure 6. 4-by-4 Stack-Mesh topology for large scale clusters.

4.1 Software Forwarding Overheads
The network performance of several network configurations 
was measured using NetPIPE [19]. A set of Pentium-II 
400MHz with 384MB of memory running LINUX Kernel 
version 2.2.9-27mdk and the Intel EtherExpress 520T switches 
were used in the experiments. The MPI routines were called to 
send/receive messages between a pair of nodes.

The differences in the transfer time of hardware-based and 
software-based are reflected in Figure 8. For the block size of 1 
Kilo-bit, the transfer delays for direct connection, hardware 
Ethernet switch, software forwarding are measured as 146 µ s, 
151 µ s, 208 µ s, respectively. The hardware switching is 1.37 
time faster than the software forwarding. In the Ethernet 
throughput graph, Figure 9 (a), the throughput of the hardware
switch are very close to the direct connection (cross wire). The 
performance of two switch in series is slightly lower than the 
single switch. This is because the switching delay is small 
compared to the software overhead incurred during packet 
initiation and reception.

The throughput of software forwarding is 10-20% less than the 
hardware switch for the medium block sizes. The throughput of 
the communication further decrease when two-pairs of nodes

send messages simultaneously. Similar trend is observed in the 
Ethernet signature graph, in Figure 9 (b). This is because, in 
software forwarding, the message is passing through two 
switches and one software forwarding. The message is first sent
from the node to the switch and then is to the gateway node. 
The gateway node performs forwarding functions and then 
sends message to the second switch which is in turn forwarding 
the message to the destination node. From the results of the 
experiment,  communication performance degrades 
considerably using software forwarding. The intergroup 
communication in both SR and SM networks should be 
minimized.

4.2 Scalability
We studied the scalable performance of Ethernet technology by 
estimating the maximum cluster size for different topologies. 
The 24-port fast Ethernet switch is considered as the network 
device building block. We make an assumption that the 
maximum number of switches in the same stack is equal to five 
and at most four network interfaces can be installed at each 
node. The maximum sizes of the star, tree, SR, SM topologies 
are estimated as follow.
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Figure 7. An interface selection algorithm for Stack-Mesh topology.
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Figure 8. Network performance comparison: Block size versus transfer time.

Table 2. Summarize the scalability of the proposed Ethernet topologies for massively parallel cluster.

For the star topology, the maximum number of nodes 
connected to the cluster is equal to the product of the number of 
port Is (24 ports) and the number of switch in the stack (5), 120 
(24× 5) nodes in our case. The bisection bandwidth BW can be 
represented as min(Is / 2∗ b,SP)× #ofNIs. Under parameters 
considered, the value of  Is / 2∗ b is 1.2 Gbps.

For the two-level tree topology, the connection between the 
root node and the level one comprises of two bundled links to 
increase bandwidth to 200Mbps. The interconnection network 
consists of a single switch as the root and sixty switches in the 
level 1 (twelve groups of five switches). The total of 1416 
nodes can be connected to the cluster as leave nodes with min
(1.2Gbps,SP) bisection bandwidth. Although a large number of 
nodes can be connected to the tree topology, available bisection 
bandwidth BW located at the root switch is not well balanced 
with the number of nodes.

A 5-stage SR network consists of 25 switches (5 stackable 
switches at each stage) and the total of 300 nodes (60 nodes per 
stages). The peak bisection bandwidth is 12Gbps (60× 2×
100M). The network diameter D is 4 hops. A message has at 
most one forward operation between any pair of source and 
destination. While the communication delay in the SR topology 
is higher due to software forwarding, the aggregated bisection 

bandwidth of the proposed topology significantly higher by a 
factor of 10 and communication locality of intra-stage nodes 
can benefit from the directly connected hardware switch. We 
believe that as performance of microprocessor continuing to 
increase and the adoption of a fast processor in the network 
interface, the software forwarding overhead will decrease in the 
near future.

The 4× 4 SM networks consists of 32 SSBs which are 
comprised of 160 switches. The number of computing nodes in 
a single group is equal to 60 nodes therefore the total number of 
nodes is 60× 16 = 960 nodes. The peak bisection bandwidth is 
48Gbps. Each group of nodes has 6Gbps bandwidth. The 
network has 4 groups in one dimension. Therefore the total of 6
× 4 = 24Gbps bisection bandwidth. With the wrap around 
channel, the bisection bandwidth is doubled to 48 Gbps At 
most one forward operation is required between any pair of 
source and destination. The scalability results are summarized 
in Table 2.

4.3 HPL Benchmark Experiments
To investigate the validity of the proposed topologies, HPL-A 
portable implementation of the High Performance Linpack  
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Figure 9. Network performance comparison (a) Network throughput versus message block size, (b) Network throughput versus
transfer time. The test results show the performance of the hardware switching is 1.37 times and the software forwarding. The

software forwarding shows higher communication overhead at the same block size.

benchmark for distributed- Memory computers was tested on 
different network topologies. Due to limited resources, the 
clusters consists only eight nodes. The same computer 
configurations were used. The HPL results cannot reflect the 
scalability of the proposed system since the number of nodes is 
small but we test the HPL to show the implementation of the 
proposed topology. The following parameters are selected: 
problem size = 10000, Block size NB = 64, and P× Q = 1× 8. 
The performance results are shown in Table 3.

Table 3. HPL
performance results.

In the star topology, eight nodes are connected to a single 
Ethernet switch. The performance of the start topology is the 
best for the eight-node system. For the tree topology, two sets 
of four nodes are connected to two level-1 switches. The level-
1 switches have a single link connected to the level-0 switches. 
The SR topology consists of four stages. Each stage consists of 
two computing nodes. The performance of the SR topology is 
very poor. The HPL benchmark has considerable 

communication activities. The nodes in the SR topology have 
to process the forwarding tasks.

The degradation in performance results from the forwarding 
overhead and the context switch overhead. However, the HPL 
results for the 8- node system is not a fair comparison. The SR 
topology is designed for the system that the star topology 
cannot accommodate. In the larger system, the intra-stage 
traffic can communicate through hardware. The number of 
nodes at each stage is equal to 60 which can perform a certain 
amount of task. The larger number of nodes means better 
distribution of forwarding task of interstage traffic. Also the 
large problems are usually divided into multiple levels of 
hierarchies. The communication between subproblem is less.

To relieve the forwarding overhead, the extra node is added to 
each stage to perform the forwarding task or act as a gateway. 
The system consists of 12 nodes, 8 nodes for computation and 4 
nodes for forwarding. The performance is improved by an order 
of magnitude. As the network interface technology and 
microprocessor technology continues to evolve, the software 
forwarding overhead will decrease and slowly migrate to 
hardware level.

5. Concluding Remarks
The Ethernet network topologies for large scale clusters were 
studied. The contemporary Ethernet switches can be stacked 
together and have large backplane bandwidth. We proposed the 
SR and SM topologies for medium to large size clusters 
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implemented with stackable Ethernet switches. In SR network, 
the groups of stack switches are connected in series with 
wraparound links. The mesh network with wraparound links is 
used as a basis of the SM topology.

The software forwarding overheads were measured and 
compared to the hardware overhead. The results show that the 
hardware switch is faster than the software forwarding (adopted 
in the proposed topology) by a factor of 1.37. The aggregate 
bisection bandwidth of the SR network is more than other 
topologies by a factor of ten. The forwarding tasks are 
distributed among all nodes. The SR/SM networks of 300/960 
nodes with 12/48Gbps bisection bandwidth are shown. The 
realization of the SR networks was tested using HPL 
benchmark. For the small cluster, the results from HPL 
benchmarks in SR network is very poor. However, we believe 
that applications run in a large cluster, the subproblems are 
classified into several levels. The communication intensive 
parts of the task are allocated to the same stage. Therefore the 
interstage traffic can be reduced. The proposed approach is a 
promising interconnect solution for a cluster-based 
supercomputer not only as the main interconnection but also the 
back-up network of the high speed network for better system 
availability.
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ABSTRACT – The energy band gap of intrinsic thiophene monomer and dimer were calculated using
Hartree-Fock (HF) and density functional theory (DFT) methods employing various combinations of
exchange and correlation functionals with electron core potential (ECP) split valence basis sets.  HF
overestimates band gap by up to 6.10 eV for thiophene monomers and dimers.  DFT calculations with hybrid
functionals (B3LYP and B3P86) give an excellent results (4.06 eV and 4.11 eV) which are in good agreement
with the experimental energy band gap (4.05 eV).
KEYWORDS -- Energy band gap; density functional theory; ab initio; HOMO-LUMO; thiophene.

1. Introduction
Due to its chemical stability, high conductivity upon doping,
and their non-linear optical properties, polythiophene is
among the widely studied conjugated organic polymers,
experimentally and theoretically [1].  During the recent years
systematic efforts were aimed at investigating the molecular
and electronic structure of thiophene oligomers and its
derivatives [2, 3, 4, 5, 6, 7].

The energy gap between valence and conduction band of
polymer is related to the lowest allowed energy of its
monomer units and to the bandwidth resulting from the
overlap between the monomer orbitals as shown in Figure 1
[2].  The energy band gaps obtained from band structure
calculations for solids are analogous to Highest Occupied
Molecular Orbital (HOMO) – Lowest Unoccupied Molecular
Orbital (LUMO) energy differences in molecules.

Figure 1. Relationship between HOMO-LUMO levels of
finite and band gaps of the infinite system.

To design a low band gap polymer, it is desirable to start with
monomer units with small excitation energies.  A prior idea
on the estimate is often useful.  One way to obtain excitation
energies is to calculate the energy of the ground and excited
state explicitly and to take the energy difference. The
commonly accepted structure of polythiophene is a linear
chain of monomers α - α′ (2, 5) bounded by carbon [3] as
shown in Figure 2.

An initial estimate of the band gap can be carried out using
density functional theory (DFT).  DFT is very attractive in
calculations involving finite system because even the lowest
level of DFT – the Local Spin Density Approximation
(LSDA) – includes some electron correlation. This is
extremely important in the design of conducting organic
polymers which have an extended π system.  Although the
LSDA eigenvalue differences underestimate the band gap
compared to experiment, the shift is almost vertical and very
systematic [2].

DFT method had successfully been used to study band gaps
of conjugated organic polymers where the HOMO/LUMO
difference provide good estimate of the excitation energy.
While there is some controversy surrounding the
interpretation of DFT orbitals energies, we find that
HOMO/LUMO energy difference offers a very good estimate
of band gaps.  It should be noted that the HOMO/LUMO
energy difference at ab initio level does not closely relate to
excitation energies due to the absence of orbital relaxation
effects [8].

2. Computational Details
Initial geometries were optimized at Hartree-Fock (HF) level
of theory and further reoptimized using DFT methods to
include correlation corrections.  In this study, an exchange

LUMO

HOMO

∆E Eg
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functional which was proposed by Becke [11a] in 1988 using
a gradient-corrected correlation functional of Lee, Yang and
Parr [11b, 11c] was employed.  Hybrid functional are also
used, the Becke’s three-parameter functional (B3) [11d]
which defines the exchange functional as the linear
combination of Hartree-Fock, local and gradient-corrected
exchange terms. The B3 hybrid functional was used in
combination with the correlation functionals of Lee, Yang
and Parr and non-local correlation expression provided by the
Perdew 86 (P86) [11e].

The type of basis set is that of Stephens/Basch/Krauss ECP
split valence (CEP-31G), augmented with polarization
functions on heavy atoms (CEP-31G*), diffused function
(CEP-31+G) and polarized functions (6-31G**).  These basis
sets were employed because some previous calculations [6]
suggest that their results are in good agreement with the
experimental values of the energy band gap of different
polymeric system.

The vibrational frequency calculations were carried out to
characterize the stationary points.  Symmetry constraints
were applied whenever possible.

All calculations were performed using the Gausian ’94 [9]
and GAMESS [10] suites of quantum chemistry programs
running under Beowulf cluster, SunSparc station, and DEC
alpha machines.

3. Results and Discussion

3.1 Geometries
The optimized results using hybrid DFT functional
(B3LYP/CEP-31G*) are shown in Figure 2.  This is the
stable geometry of thiophene monomer and dimer.  With the
HF/6-31G* and B3LYP/CEP-31G*, the bond length are up to
±0.025Å and ±0.046Å, respectively when compared to
experimental values.  The bond angles agree very closely (to
within ±0.33o) with experiment.  Pure and hybrid functionals
geometries are almost identical.  Compared to HF theory,

DFT yields longer C=C double bonds.  Thus, at HF, π-
electrons is more localized.  This is most likely due to the
neglect of electron correlation.  For geometry calculations,
HF revealed more accurate estimates, indicating that it may
not be necessary to perform DFT calculations to obtain good
geometries in this case.  Complete documentation of
geometries is listed in Table 1.

3.2 Energy Band Gaps
Spectroscopic data for organic π-systems are usually
determined either in solution or in the solid state (crystal or
thin film). Since our calculations are for isolated molecules in
the gas phase, we have attempted to compare our calculation
to experimental results in solution.

Table 2 summarizes the energy band gap of intrinsic
thiophene monomers and dimers at HF, BLYP, B3LYP and
B3P86 with various combinations of basis sets.  As expected,
the RHF energy band gap of intrinsic thiophene oligomers
overestimates the excitation energy because of the absence of
correlation contribution [16].  Little improvement of the
energy band gap is obtained in applying a higher level basis
set; the absolute error is 5.51-6.10 eV.  It is expected that the
percent error decrease with increasing length of polymers at
this level of theory [9].  The pure DFT functional (BLYP)
underestimate the energy band gap by up to 1.77 eV
compared to the experimental excitation energy.  Hybrid DFT
method (B3LYP and B3P86) yielded HOMO-LUMO energy
difference which are in good agreement with the experiment.
The DFT (B3LYP and B3P86) energy band gaps for
thiophene dimer give an error of only up to 0.22 eV and 0.17
eV, respectively.  The two hybrid functionals lead to almost
identical results.  Applying more comprehensive basis ddid
not significantly improve the energy band gap of thiophene
oligomer.  This study shows that by using hybrid DFT
functionals, a substantial improvement in the excitation
energy can be obtained.  The same observation was also
reported previously by other workers [1, 2] using different
polymeric system.

Figure 2. Structures of thiophene (a) monomer (b) dimer. Calculated bond distances are given in angstrom (Å) at
B3LYP/CEP-31G*.
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Table 1. Optimized structure of thiophene oligomers at 6-31G* (HF) and CEP-31G* (DFT).

Parameter RHF error BLYP error B3LYP error B3P86 error Expt.
Monomer

Bond length
C2 – H6 1.074 0.004 1.095 0.017 1.088 0.010 1.088 0.010 1.078
S1 – C2 1.726 0.012 1.764 0.050 1.749 0.035 1.737 0.023 1.714
C4 = C5 1.345 0.025 1.404 0.034 1.393 0.023 1.391 0.021 1.370
C3 – C4 1.437 0.014 1.455 0.032 1.449 0.026 1.443 0.020 1.423

Bond angle
S1C2C3 111.83 0.33 111.43 0.07 111.50 0.000 111.51 0.01 111.50
C2C3C4 112.52 0.13 112.63 0.02 112.51 0.140 112.39 026 112.65
C4C3H7 124.11 0.12 124.21 0.02 124.23 0.000 124.32 0.09 124.23
Dimer

Bond length
S1 – C5 1.736 0.012 1.766 0.042 1.750 0.026 1.739 0.015 1.724
C5 – C2 1.481 0.017 1.476 0.012 1.473 0.009 1.468 0.004 1.464
C4 = C5 1.367 0.014 1.403 0.050 1.391 0.038 1.390 0.037 1.353
C3 – C4 1.449 0.018 1.448 0.017 1.443 0.012 1.437 0.006 1.431
C4 – C3 1.375 0.019 1.414 0.058 1.402 0.046 1.339 0.043 1.356

Bond distances and bond angles are given in Å and degrees, respectively.

Table 2. HOMO-LUMO energy differences (energy band gap in eV) at various levels of theory.

Monomer Dimer
6-31G 6-31+G 6-31G* 6-31G** 6-31G 6-31+G 6-31G* 6-31G**

RHF 12.6066 11.4289 12.6888 12.6700 9.9676 9.5622 9.7031 10.1500

CEP-31G CEP-31+G CEP-31G* 6-31G** CEP-31G CEP-31+G CEP-31G* 6-31G**
BLYP 4.2298 4.2325 4.2415 4.4400 2.6741 2.2771 2.6790 2.8000
B3LYP 5.8426 5.8265 5.8570 6.1200 4.0491 4.0417 4.0572 4.2700
B3P86 5.9177 5.9153 5.9357 6.1800 4.1008 4.1049 4.1092 4.2200
Expt’l. value 5.2300a 4.0500b

aref. [18], bref. [19]

4. Concluding Remarks
We have shown that a substantial improvement of DFT
energy band gaps can be achieved with hybrid DFT
functionals.  Vertical excitation energies of thiophene
oligomers were approximately reproduced with ±0.22 eV of
the corresponding experimental results (solution phase).

Polythiophene presents special problems in computational
modeling because of its extended molecular system.  As a
consequence, their properties may arise from secondary and
tertiary structure effects, as well as from the primary
microstructure.  Their size and structure complexity causes
the difficulty, even without worrying about inter chain-
packing effect.

Energy band gap calculated using hybrid DFT functionals
yielded estimates of excitations energies which are in good
agreement with experimental value.  The use of DFT hybrid
functionals therefore will lead to a significant improvement
of the energy band gap relative to those computed by HF
methods.  This study also indicated that the presences of
polarized functions on heavy atoms as well as the

corresponding diffused functions are crucial in the
computations of the energy band gap of thiophene oligomers.

We hope that this contribution will stimulate the
computational modeling community for the discussion of
intrinsic polythiophenes as well as other conducting
polymers.  It is further suggested that longer thiophene
oligomer chains up to 11 units or even longer with higher
basis sets will be used so that a more accurate energy band
gap could be predicted though this requires a very high
computational cost.

Acknowledgments
We thank Prof. Ronald and Mr. Marvin Fernandez for many
fruitful discussions.  Likewise, thank is due to Mr. Allen S.
Dahili for many helpful assistance.  This study was
conducted through the scholarship grant supported by the
Commission on Higher Education – Mindanao Advanced
Education Project (CHED-MAEP).



218

Reference
[1]  Salzner, U., Lagowski, J. B., Pickup, P. G. and Poirier,

A., Synth. Met. 96 (1998) 177-189.

[2] Salzner, U., Lagowski, J. B., Pickup, P. G. and Poirier,
A., J. Comp. Chem. 18, 15, 1943-1953, 1997.

[3] Salzner, U., Lagowski, J. B., Pickup, P. G. and Poirier,
A., Synth. Met. 98 (1999) 221-227.

[4] Nakanishi, H, et al. J. Org. Chem. 1998, 63, 8632-8633.

[5] Lathti, P. M., Obrzut, J., Karasz, F. E., Macromolecules,
1987, 20, 2023.

[6] Smith, James Richard, Electrosynthesis of Novel
Polyheterocycles, Ph.D. Dissertation, Unpublished,
School of Pharmacy & Biomedical Sciences, University
of Portsmouth, Portsmouth, UK, 1995.

[7] Irle, Stephan and Lischka, Hans. J. Chem. Phys. 103 (4)
1995.

[8] Foresman, J. B. and Frisch, Æ., Exploring Chemistry
with Electronic Structure Methods, 2nd ed. Gaussian,
Inc., Pittsburgh, PA. 1995.

[9] Gaussian 94, Revision B.2. M. J. Frisch, G. W. Trucks,
H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A.
Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A.
Montgomery, K. Raghavachari, M. A. Al-Laham, V. G.
Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P.
Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S.
Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S.
Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-
Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc.,
Pittsburgh PA, 1995.

[10] GAMESS Version = 22 Nov 1995 from Iowa State
University, M.W.Schmidt, K.K.Baldridge, J.A.Boatz,
S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki,
N.Matsunaga, K.A.Nguyen, S.J.Su, T.L.Windus,
Together With M.Dupuis, J.A.Montgomer. J. Comp.
Chem.  14, 1347-1363 (1993).

[11] (a) A. D. Becke, Phys. Rev., A38, 3098 (1988). (b) C.
Lee, W. Yang and R. G. Parr, Phys. Rev., B37, 785-789
(1988). (c) B. Miehlich, A. Savin, H. Stoll and H.
Preuss, Chem. Rev. Lett, 157, 200 (1989). (d) A. D.
Becke, J. Chem. Phys. 98, 5648-5652 (1993). (e) J. P.
Perdew, Phys. Rev. B33, 8822-8824 (1986).

[12] Slater, J.C., Quantum Theory of Molecules and solids,
McGraw-Hill: New York, 1974, Vol. 4.

[13] Vosko, S.H., Wilk, L., Nusair, M., Can, J. Phys. 1980,
58, 1200.

[14] Becke, A.D., J. Chem. Phys. 1993, 98, 1372.

[15] P. Walters, M. Stahl, BABEL Program (version 1.1)
Copyright ©1992, 93, 94, Dolota Research Group,
Department of Chemistry, University of Arizona.

[16] Hyperchem ™ Release 3. Windows Molecular
Modelling System, Copyright ©1993, Hypercube, Inc.
and Autodesk, Inc. Developed by Hypertube, Inc.

[17] R.M. Dreiler and E.K.U. Gross, Density Functional
Theory, Springer, Berlin, 1990.

[18] Simmons, W.W., Handbook of Ultraviolet Spectra;
Sdler Res. Lab.: Philadelphia.

[19] Colditz, R., Grebner, D., Helbig, M., Rentsch, S., Chem.
Phys.1995, 201, 309.

[20] O. Kwong and M.L. McKee, J. Phys. Chem. B2000,
104, 1686-1694.

[21] Theoretical Studies of electronic Spectra of Organic
Molecules, Roos, B.O., Fülscher, M., Malmqvist, P.-Å.,
Merchàn, M., Serrano-Andrès, L., in Quantum
Mechanical Structure Calculations with Chemical
Accuracy, Langhoff, S.R., Ed., Kluwer Academic
Publishers: Boston, 1995; pp 357-438.




